1) a) Write an equation for the nth term of the arithmetic sequence. $-7,-8.5,-10,-11.5, \ldots$
b) Using your formula, find a_{12}.

General Formula: $a_{n}=a_{1}+d(n-1)$

$$
a_{1}=-7 \quad d=-1.5
$$

Equation: $a_{n}=-7-1.5(n-1)$

$$
\begin{aligned}
& a_{12}=-7-1.5(12-1) \\
& a_{12}=-7-1.5(11) \\
& a_{12}=-7-16.5 \\
& a_{12}=-23.5
\end{aligned}
$$

The $12^{\text {th }}$ term in the sequence is $\mathbf{- 2 3 . 5}$
2) The first row of a dominos display has 10 dominos. Each row after the first has two more dominos than the row before it.
a) Write the first five terms of the sequence that represents the number of dominos in each row.

Row (n)	1	2	3	4	5
Dominos (an)	10	12	14	16	18

b) Write an equation that can be used to find the number of dominos in the nth row.

Equation: $a_{n}=10+2(n-1)$
c) Find the number of dominos in the $15^{\text {th }}$ row.
$\mathrm{n}=15$
$a_{15}=10+2(15-1)$
$a_{15}=10+2(14)$
$a_{15}=10+28$
$a_{15}=38$
There are $\mathbf{3 8}$ dominos in the $15^{\text {th }}$ row.
d) What row has 60 dominos in it?
$a_{n}=60$
$60=10+2(n-1)$
$60=10+2 n-2$
$60=8+2 n$
$52=2 n$
$26=n$
There are $\mathbf{6 0}$ dominos in the $\mathbf{2 6}^{\text {th }}$ row.
3) During a science experiment, the temperature of a liquid substance increased $2^{\circ} \mathrm{F}$ every hour. After the first hour, the temperature was $56^{\circ} \mathrm{F}$. Carry and Carl each wrote an equation that can be used to find the temperature of the substance after the nth hour.

Carry's Equation Carl's Equation
$a_{n}=56+2(n-1)$
$a_{n}=2 n+54$
(a) Are the equations equivalent? Justify your response.

Yes. See work shown.
$a_{n}=56+2(n-1) \leftarrow$ Carry's equation
$a_{n}=56+2 n-2$
$a_{n}=54+2 n$ which is equivalent to $\mathbf{a}_{\mathrm{n}} \mathbf{=} \mathbf{2 n}+\mathbf{5 4} \leftarrow$ Carl's equation
(b) What does 56 represent in Carry's equation?

It is the temperature of the liquid after the first hour of the experiment.
(c) What does 54 represent in Carl's equation?

It is the temperature of the liquid before the experiment started.
(d) What does the coefficient 2 represent in both equations?

It is the rate of change. The temperature increases by 2° each hour.

