Essential Question: Which algebraic methods can we use to solve a linear system?

Do Now: Consider the system: $-x+y=3$

$$
2 x+y=6
$$

a) Which algebraic method (elimination or substitution) would you use? Be ready to justify your response.
b) Will both methods produce the same solution?

Solve each system using the Elimination method.

1) $2 x+y=6$
$x-3 y=-11$
2) $14 y=12-6 x$
$2 x+6 y=4$
3) Think About This!

Consider the system below. Dana said that she can solve this system using elimination by multiplying the top equation by -2 and the bottom equation by 5 .

Is she correct? Why?
Could Dana choose different multipliers and still eliminate a variable term? Explain.
$5 x-2 y=20$
$2 x+3 y=27$

Create a linear system to solve each problem below. Choose an algebraic method (substitution or elimination) to solve your system.
4) Two small pitchers and one large pitcher can hold 8 cups of water. One large pitcher minus one small pitcher can hold 2 cups of water. How many cups of water can each pitcher hold?
5) Pam has two part time jobs. At one job, she works as a cashier and makes $\$ 8$ per hour. At the second job, she works as a tutor and makes $\$ 12$ per hour. One week she worked 30 hours and made $\$ 268$. How many hours did she spend at each job?
6) The sum of two angles is 90°. The difference between twice the larger angle and the smaller angle is 105°. Find the measures of the two angles.

Solve each system of linear equations using the elimination method.

1)$3 x+3 y=12$ $6 x+11 y=14$	$2)$ $3 x+8 y=17$ $-2 x+9 y=3$

Use a linear system to solve each problem below. Use any algebraic method to solve.
3) Roses cost $\$ 2.50$ each and lilies cost $\$ 1.75$ each. Ellis spent $\$ 24.75$ for 12 of the flowers. How many of each type of flower did he buy?

4) Bright Pools is building a rectangular pool at a new house. The perimeter of the pool has to be 94 feet, and the length has to be 2 feet more than twice the width. What will be the length and width of the pool?

