Essential Question: Are there other methods we can use to solve linear systems algebraically?

- **Do Now:** Use the substitution method to solve the following linear system. *Don't forget to check* your solution in both equations!
- 4x + 3y = 162x - 3y = 8

Is there an easier way to solve the system from the Do Now?

Solving Linear Systems using Elimination

Examples:

- 1) 3x 5y = -162x + 5y = 31

- 1. Line up variable terms and constants.
- 2. Decide which variable term ("x" or "y") will be easier to **eliminate**. In order to eliminate a variable term, the coefficients must be **additive inverses** (same number, opposite signs).
- 3. **Add** each column to **eliminate** the desired variable (*addition property of equality*).
- 4. The resulting equation should have only **one variable**. Solve this simple equation.
- 5. Substitute the value of the variable into either of the **original** equations to get the value of the other variable.
- 6. Check your solution!

2)
$$4x + y = 7$$

 $4x - 2y = -2$
3) $x + y = 10$
 $2x + 3y = 8$
4) $2x - 6y = -6$
 $7x - 8y = 5$
5

When using the Elimination Method, sometimes we need to ____

one or both equations by a number in order to create a pair of variable terms

_).

that are additive inverses (_____

Solve the following system of equations using the elimination method. Remember to check your solution.

1. c - 2d = 14	2. $a - 4b = -8$
c + 3d = 9	a - 2b = 0
3. 8a + 5b = 9	42m + 4n = 13
2a - 5b = -4	6m + 4n = 9
5. $4x - y = 10$	6. $5x + 8y = 1$
2x + 3y = 12	3x + 4y = -1