Essential Question: Are there other methods we can use to solve linear systems algebraically?

Do Now: Use the substitution method to solve the following linear system. Don't forget to check your solution in both equations!

$$
4 x+3 y=16
$$

$$
2 x-3 y=8
$$

Is there an easier way to solve the system from the Do Now?

Solving Linear Systems using Elimination

Examples:

1. Line up variable terms and constants.
2. Decide which variable term (" x " or " y ") will be easier to eliminate. In order to eliminate a variable term, the coefficients must be additive inverses (same number, opposite signs).
3. Add each column to eliminate the desired variable (addition property of equality).
4. The resulting equation should have only one variable. Solve this simple equation.
5. Substitute the value of the variable into either of the original equations to get the value of the other variable.
6. Check your solution!

When using the Elimination Method, sometimes we need to one or both equations by a number in order to create a pair of variable terms that are additive inverses ().
\qquad

Solve the following system of equations using the elimination method. Remember to check your solution.

1.$\begin{aligned} & c-2 d=14 \\ & c+3 d=9 \end{aligned}$	$\text { 2. } \begin{aligned} a-4 b & =-8 \\ a-2 b & =0 \end{aligned}$
3.$\begin{aligned} & 8 a+5 b=9 \\ & 2 a-5 b=-4 \end{aligned}$	4. $-2 m+4 n=13$
5.$\begin{gathered} 4 x-y=10 \\ 2 x+3 y=12 \end{gathered}$	$\text { 6. } \quad \begin{aligned} 5 x+8 y & =1 \\ 3 x+4 y & =-1 \end{aligned}$

