Essential Question: How do we write the equation of a line from a table and verbal description?

Do Now:

What is the equation of the line that passes through the point (3,-1) and has a slope of 2? Hint: Graph the line first!

$$m = 2$$

$$b = -7$$

$$y = 2x - 7$$

Writing the Equation of a Line using an Algebraic Approach

Step 1: Find the slope of the line

Step 2: Substitute the slope and one of the points (x, y) into y = mx + b

Step 3: Solve for b (y-intercept)

Step 4: Write the equation in slope-intercept form (y = mx + b)

Example: From the information given in the Do Now, write the equation of the line algebraically.

Slope	y-intercept	equation
a	(3,-1) y = mx+b -1 = 2(3)+b -1 = 6+b	y = 2x - 7
	-7 = b	

1) Represent the equation of a line that passes through the coordinates (2,0) and (0,3).

slope	y-intercept	equation
$\frac{\Delta y}{\Delta x} = \frac{3-0}{0-2}$ $= \boxed{\frac{3}{3}}$	b = 3	$y = -\frac{3}{a}x + 3$

2) Represent the equation of the line that passes through the coordinates (-3,7) and (3,3).

Slope	y-intercept	equation
$\frac{\Delta y}{\Delta x} = \frac{7-3}{3-3}$ $= \frac{4}{-6} \Rightarrow \boxed{-\frac{2}{3}}$	(3,3) $y = mx + b$ $3 = -\frac{2}{3}(3) + b$ 3 = -2 + b 5 = b	$y = -\frac{2}{3}x + 5$

3) Write the equation of a line that is parallel to 4y = 4x - 20 and passes through the point (-6, -3).

(- / - /.	1	•
Slope	y-intercept	equation
parallel lines have same slope $\frac{4y}{4} = \frac{4x}{4} - \frac{20}{4}$ $y = x - 5 m = 1$	(-6,-3) $y = mx+b-3 = 1(-6)+b-3 = -6+b3 = b$	y = x + 3

4) Write the equation of a line that runs through the points listed in the table below.

1	v	v	· Choose any two points to that stope		
	13	4 5	slope	y-intercept	equation
\rightarrow	14	50	1 (1) 50	(11 50)	
	15	55	$\Delta y = 60-50$	(14,50)	y = 5x - 20
\rightarrow	16	60	DX 16-14	y=mx+b	y - 3x - 20
:oveseo•			= 10 > 5	50 = 5(14) + b	
			a · C	50= 70+b	
·//	WAY			(-20=b	

7	17	IA	m	F		The	1
1		Æ		r A	V	TA	F
	_	4		¥	11	ľΑ	ı

We can represent a linear relationship with an equation if we know the _ and y-intercept. With this information, we can write the equation in y = mx + b form (slope-intercept form).

in
$$y = m \times + b$$
 form (slope-intercept form)