Essential Question: How are linear functions graphed?

Do Now:

Recall that a function is an input-output relationship that has exactly one output for each input. Consider the following function rule:

The output is equal to one more than two times the input.

Using the variable y to represent the output values and using the variable x to represent the input values, write the function rule algebraically.

Function Rule: \qquad

Graphing Linear Functions

- A linear function is a function whose graph is a \qquad _.
- Linear functions can be graphed by setting up a table of inputs and outputs, known as a table of values.

How do we represent all the solutions to $y=2 x+1$?

Domain: \qquad
Range: \qquad

Choose one solution from the graph and justify why it is a solution.

Is $(-25,-49)$ a solution to this equation?

Justify why this graph and table shows a function.

Graphing Linear Equations using the Table of Values Method

- If necessary, rewrite the equation in $y=m x+b$ form (solve for y).
- Create a table of x and y values
- If the coefficient of x is an integer, use x values $-2,-1,0,1,2$.
- If the coefficient of x is a fraction, use multiples of the denominator for your x values.
- Plot the points in the table and draw an extended line.
- Label the line with the original equation.

1) Graph the solutions to $y=-\frac{1}{2} x+1$

Is the ordered pair $(585,-291.5)$ part of the graph of $y=-\frac{1}{2} x+1$?

Is the order pair $(426,-214)$ part of the graph of $y=-\frac{1}{2} x+1$?

The standard form of a linear function is $A x+B y=C$, where A, B and C are real numbers. How do we rewrite these functions in $y=m x+b$ form?
2) Graph the solutions to $x=y-3$

x	y

How can the graphing calculator help us graph a linear function?

3) Graph the solutions to $3 y+6=x$

Algebra RH
HW \#
Set up a table of values and draw the graph of each function.

1) $y=-2 x+3$

Domain: \qquad
Range: \qquad
2) $4 y-x=-16$

3) $y=3 x$

Determine if the point $(-25.25,-75.75)$ is part of the graph of the function $y=3 x$. Justify your response.

