Algebra RH

Essential Question: How are linear functions graphed?

Do Now:

Recall that a function is an input-output relationship that has exactly one output for each input. Consider the following function rule:

The output is equal to one more than two times the input.

Using the variable y to represent the output values and using the variable x to represent the input values, write the function rule algebraically.

Function Rule:_____

		<u> </u>	Grap	hing	Lineal	r Fun	ctie	ons	3						
	•	A linear fun	ction is	a functi	on whos	e graph	is a								•
	• Linear functions can be graphed by setting up a table of inputs and o known as a <i>table of values</i> .													outs,	
	Hov	w do we repr	esent c	all the s	olutions	to y = 2	2 <i>x</i> + 1	?							
											<u>†</u>				_
								$\left \right $	_	_	\vdash	_	+	_	4
					-		\vdash	+	_	-	\vdash	_	+	_	-
					_		\vdash	+		+	+	+	+	-	-
					_										1
															┢
							\vdash	+	_	_	\vdash	_	+	_	-
		1					\vdash	+		+	\vdash	-	+	+	-
omain:								+		+		+		-	1
ange:											↓				
hoose one	soluti	on from the	Is (-25, -4	9) a solu	tion to	this	J	usti	fy v	why	this	s gro	iph c	and
°aph and j plution.	ustify	why it is a	equ	ation?				to	able	sho	ows	a fu	incti	on.	

Graphing Linear Equations using the Table of Values Method

• If necessary, rewrite the equation in *y* = m*x* + b form (solve for *y*).

ex.
$$6x + 3y = 9$$

 $3y = -6x + 9$
 $y = -2x + 3$

- Create a table of *x* and *y* values
 - If the coefficient of *x* is an integer, use *x* values -2, -1, 0, 1, 2.
 - If the coefficient of *x* is a fraction, use multiples of the denominator for your *x* values.
- Plot the points in the table and draw an extended line.
- Label the line with the original equation.

1) Graph the solutions to $y = -\frac{1}{2}x + 1$

Is the ordered pair (585, -291.5) part of the graph of $y = -\frac{1}{2}x + 12$	Is the order pair (426, -214) part of the graph of $y = -\frac{1}{2}x + 1$?

The **standard form** of a linear function is Ax + By = C, where A, B and C are real numbers. How do we rewrite these functions in y = mx + b form?

2) Graph the solutions to x = y - 3

x	у

How can the graphing calculator help us graph a linear function?

3) Graph the solutions to 3y + 6 = x

x	у

Algebra RH

HW #

Set up a table of values and draw the graph of each function.

1) y = -2x + 3

Domain: _____

Range: _____

											4												
-																							
																							-
	1	1	1	1	1	1	1		1	1			1	1	1		1	1	1	1		1	1
						-			_		4	<u> </u>						-	_	-		-	
_						-		-				-				-	-	-	-	-	-	-	
_								-				-								-		-	
_						-						-				-	\vdash	\vdash	-	-	-	-	
												-				-	-	+	-		-		
-																		-	+	-		-	
-									-							-	\vdash	\vdash	\vdash	\vdash	-	1	
																			t	1			
																							-
												_	_							_		_	
_												-					-	-	-	-		-	
										_		-						-	-	-		-	
			1	1	1	1		1	1	i.	1 1		1	1	1	1	1	1	1	1	1	1	1

3) *y* = **3***x*

Determine if the point (-25.25, -75.75) is part of the graph of the function y = 3x. Justify your response.