Essential Question: How can we graph a linear relationship using the Slope-Intercept Method?

Do Now: Graph 3y - 6x = -12 by finding the *x* and *y*-intercepts.

Complete the table below:

Equation	Slope of the Line	Y-Intercept	Equation in $y = mx + b$
3y-6x=-12			

Can you draw a conclusion based on the information in the table?

Graphing Lines using the <u>Slope-Intercept Method</u>

- Rewrite the equation in slope-intercept form (y = mx + b).
- Identify the slope and *y*-intercept of the equation.

$$y = \mathbf{m}x + \mathbf{b}$$

- Plot the y-intercept (the point where the line crosses the y-axis).
- From the *y*-intercept, use the slope to plot a few more points.
- Connect the points and graph the line.

Graph each linear function using the slope-intercept method.

1. Graph
$$y = \frac{2}{3}x + 4$$

2. Graph $y = -\frac{1}{2}x - 1$

3. Graph y = x

4. Graph y = -2x + 1

In order to graph a linear relationship using the slope-intercept method, first put the	he equation in
form (<i>slope-intercept form</i>). Next, identify the	and
The first point plotted is the	(0 <i>,b</i>). Use the
(rise/run) to create a second point, third point, etc	
Connect the points to create a line.	