Essential Question: How can we graph a linear relationship using the Slope-Intercept Method?

Do Now: Graph 3y - 6x = -12 by finding the x and y-intercepts.

Complete the table below:

Equation	Slope of the Line	Y-Intercept	Equation in $y = mx + b$
3y - 6x = -12	$\frac{4}{2} \rightarrow 2$	-4	3y - 6x = -12 3y = 6x - 12

Can you draw a conclusion based on the information in the table?

$$y = 2x - 4$$

co-efficient of x is slope constant is the y intercept [once the equation is in y= mx+b form]

Graphing Lines using the Slope-Intercept Method

- Rewrite the equation in slope-intercept form (y = mx + b).
- Identify the slope and y-intercept of the equation.

$$y = \mathbf{m}x + \mathbf{b}$$

slope

yintercept

- Plot the y-intercept (the point where the line crosses the y-axis).
- From the y-intercept, use the slope to plot a few more points.
- Connect the points and graph the line.

Graph each linear function using the slope-intercept method.

1. Graph
$$y = \frac{2}{3}x + 4$$

slope (m) =
$$\frac{2}{3}$$

3. Graph
$$y = x$$

$$m = 1$$

2. Graph
$$y = -\frac{1}{2}x - 1$$

$$m = -\frac{1}{2}$$

4. Graph
$$y = -2x + 1$$

$$m = -2$$

5. Graph
$$2y - 3x = 8$$

$$\frac{2y}{z} = \frac{3x + 8}{2}$$

$$y = \frac{3}{2}x + 4$$

$$m = \frac{3}{2}$$

6. Graph
$$x - y = -6$$

$$\frac{-y}{-1} = \frac{-x}{-1} - \frac{-6}{-1}$$

$$m = 1$$

The FAWAY

In order to graph a linear relationship using the slope-intercept method, first put the equation in

y=mx+b form (slope-intercept form). Next, identify the slope (m) and

Yintercept (b). The first point plotted is the Yintercept (0,b). Use the

Slope (rise/run) to create a second point, third point, etc....

Connect the points to create a line.