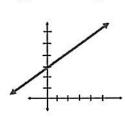
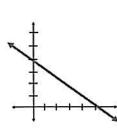

Essential Question: How do we determine the slope of a linear function?

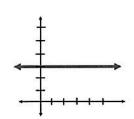
Do Now: Consider the graphs of the linear functions below. Order the graphs from most steep to least steep by writing the letters on the line below. Be ready to justify your response.

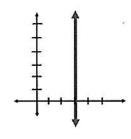


Linear Functions and Slope

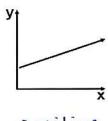

Slope is a number (ratio) that describes the ______ steep ness ____ or ___ slant __ of a line. It is

the constant rate of change.

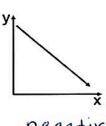

Types of Slope

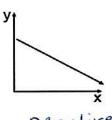


positive

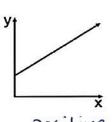


negative





Classify the following slopes as POSITIVE or NEGATIVE.



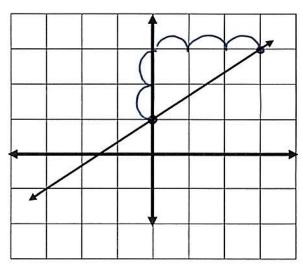
positive

negative negative

Think about...

Is the function increasing or decreasing?

'read' a graph from left to right

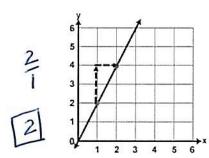

How can we calculate the slope from a graph?

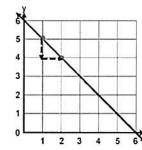
 Determine if the function is increasing or decreasing.

2) Locate any two points on the line.

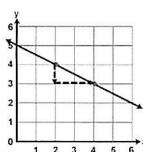
3) Calculate the Rise (Δy) and Run (Δx) between the two points.

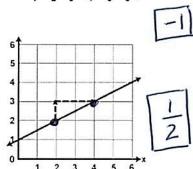
4) Create a ratio $(\frac{rise}{run})$. $\frac{2}{3}$

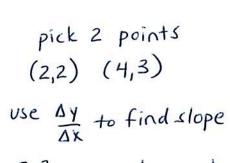

How can we find the slope of a line from two points on the line?


1) Choose any two points on the line.

2) Calculate the slope using the slope formula:


Slope Formula =
$$\frac{\Delta y}{\Delta x} = \frac{difference \ in \ y - values}{difference \ in \ x - values}$$


Find the slope of each line.



Choose one of the graphs pictured to the left and using the slope formula, verify that you calculated the correct rate of change for the linear relationship.

TAKE AWAY

The constant rate of change of a linear relationship is known as the _____stope_____ of the line.

The slope is the ratio of ______ to _____ for any two points on the line.

The slope formula is $\frac{\Delta y}{\Delta x} = \frac{\text{difference in y values}}{\text{difference in x values}} = \frac{y_2 - y_1}{x_2 - x_2}$