Essential Question: How can we graph linear relationships using x and y-intercepts?

Do Now: Complete the table for the following function and graph the relationship.

3x + 4y = 12

×	-4	0	4
у			

Identify the points where the graph intersects the x and y-axes.

x-intercept:_____

y-intercept:_____

Graphing Linear Functions Using Intercepts

Think about this...

How many points are needed to graph a line? How can we use x and y-intercepts to graph a linear function?

The **y-intercept** is the y-coordinate of the point where the graph intersects the y-axis. (0,Y) To find the y-intercept, let x = 0 and solve for y.

The x-intercept is the x-coordinate of the point where the graph intersects the x-axis. (X,0) To find the x-intercept, let y = 0 and solve for x.

Finding the x-intercept

Finding the y-intercept

Making Quick Graphs Using X and Y intercepts

1.
$$y = x + 2$$

2.
$$4x + 5y = 20$$

3.
$$\frac{2}{3}y = 4 - \frac{1}{2}x$$

We can make quick graphs of linear functions by finding the

 	 ·

1. The ordered pair for an x-intercept is (X, __) and the ordered pair for a y-intercept is (__, Y).

For #'s 2 – 4, identify the y-intercept and x-intercept of each graph.

2.

x-int:_____

y-int:_____

3.

x-int:____

y-int:_____

4.

x-int:_____

y-int:_____

Find the x and y-intercepts of each function and graph the corresponding line.

5.
$$-4x + 8y = -16$$

6.
$$-2x - 4y = 20$$

