Essential Question: How can we graph linear relationships using x and y-intercepts?
Do Now: Complete the table for the following function and graph the relationship.
$3 x+4 y=12$

\mathbf{x}	-4	0	4
\mathbf{y}			

Identify the points where the graph intersects the x and y-axes.
x-intercept: \qquad
y-intercept: \qquad

Graphing Linear Functions Using Intercepts

Think about this...
How many points are needed to graph a line?
How can we use x and y-intercepts to graph a linear function?

The y-intercept is the y-coordinate of the point where the graph intersects the y-axis. $(0, y)$ To find the y-intercept, let $x=0$ and solve for y.

The x-intercept is the x-coordinate of the point where the graph intersects the x-axis. ($X, 0$) To find the x-intercept, let $y=0$ and solve for x.

Finding the x-intercept
Finding the y-intercept

Making Quick Graphs Using X and Y intercepts

1. $y=x+2$
\times intercept $=$ \qquad y intercept $=$ \qquad
2. $4 x+5 y=20$
\times intercept $=$ \qquad
y intercept $=$ \qquad

3. $\frac{2}{3} y=4-\frac{1}{2} x$

We can make quick graphs of linear functions by finding the

1. The ordered pair for an x -intercept is (X, \ldots) and the ordered pair for a y -intercept is ($\ldots, \mathrm{Y})$.

For \#'s 2-4, identify the y-intercept and x-intercept of each graph.

x-int: \qquad
y-int: \qquad
3.

x-int: \qquad
y-int:
4.

x-int: \qquad
y-int: \qquad

Find the x and y-intercepts of each function and graph the corresponding line.
5. $-4 x+8 y=-16$
6. $-2 x-4 y=20$

