Essential Question: How do we graph linear relationships with restricted domains?

Do Now: In a local convenient store, rolls of paper towels sell for \$1.50 each. Due to a recent shortage, the store is only allowing customers to purchase up to 5 rolls. The function rule that describes the relationship between the number of rolls of paper towels purchased (x) and the total cost (y) is y = 1.50x.

Create a table of values for this function rule. Before choosing your input values (x), think about the context of the situation. What numbers should x represent?

X Number of Rolls	Y Total Cost	
0	0	
1	1.50	
2	3	
3	4.50	
4	6	
5	7.50	

Think about this...

Does this linear function have a restricted domain? Does the linear function have a restricted range?

What does the graph of this function look like?

Domain:

Range:
$$\{0, 1.5, 3, 4.5, 6, 7.5\}$$

Graphing Linear Functions with Restricted Domains begin

1. Graph the following linear function using the domain [-1, 3] where x is a real number.

v	=	2x	_	1
y	_	2		-

x	у
- 1	- 3
0	-1
1	1
a	3
3	5

E y-value

Represent the range of the function using an inequality statement and interval notation.

Inequality Statement: $-3 \le y \le 5$ Interval Notation: $\begin{bmatrix} -3, 5 \end{bmatrix}$

2. Graph the following linear function using the domain $0 \le x \le 2$ where x is a real number.

$$4y + 12x = 8$$

×	У
0	2
1	-1
2	-4

$$\frac{4}{4}y = \frac{-12x + 8}{4}$$

Represent the range of the function using an inequality statement and interval notation.

Inequality Statement:
$$-4 \le y \le a$$
 *

Interval Notation: $-4 = y \le a$ *

Defining the Domain and Range from a Graph

Consider the linear functions graphed below. Define the domain and range of the function using an inequality statement and interval notation.

x value

Domain:

$$2 \le x \le 8$$

[2,8]

y value

Range:

4.

Domain:

Range:

$$-2 \leq y \leq 4$$

$$[-2,4]$$

-	-		_	
The	Tai	40	Δ١	MAN

Linear functions with restricted domains have _____

restricted

The domains and ranges of the functions can be defined using an inequality statement or

interval notation.