Essential Question: How do we solve and graph compound inequalities?

Do Now: Graph the following compound inequalities on a number line.

a.
$$0 < x \le 4$$
 b. $x < -1$ or $x > 2$

Solving a Compound Inequality with AND

A compound inequality containing the word AND is true only if both inequalities are true. This type of inequality is called a **conjunction**.

Examples of Conjunctions:

1. x-4 > -6 and x-4 < -12. $2 < 3x+2 \le 14$

Represent the solution set in interval notation.

Interval:_____ Interval:_____

Solving a Compound Inequality with OR

A compound inequality containing the word OR is true if either of the inequalities are true. This type of inequality is called a **disjunction**.

Examples of Disjunctions:

3. 3x + 1 < 4 or 2x - 5 > 7

4.	2y < y -	3 or	3y	> y +	6
	~ ~		~		

Represent	the	solution	set	in	interval	notation.
Interval:						

Interval:_____

Extra Examples: Solve the compound inequality and graph the solution.

5. $-2 < -2 - x \le 1$	6. $3 - x > 4$ or $\frac{1}{2}x + 1 \le -2$				
←	←				
Represent the solution set in interval notation.					
Interval:	_ Interval:				
7. Describe the solution set shown below in two different ways.					
	Inequality Statement:				
-6 -4 -2 0 2 4 6 8	Interval Notation:				

8. Write a compound inequality for the solution set shown below. Describe the solution set using interval notation.

•	╟	+	¢	+	+	- \$ -	+	+	->	•
	-4	-3	-2	-1	0	1	2	3	4	

Inequality Statement:_____

Interval Notation:_____

9. Describe the solution set of the following compound inequality: -8 < x < -8

10. A poll shows that a candidate is projected to receive 57% of the votes. If the margin of error is plus or minus 3%, write a compound inequality for the percentage of votes the candidate can expect to get.

Let x = the percentage of votes

11. Mercury is one of only two elements that is liquid at room temperature. Mercury is non-liquid for temperatures less than -38.0° F or greater than 673.8° F. Write a compound inequality for the temperatures at which mercury is non-liquid.

Algebra RH

HW #

Solve each inequality. Graph the solution set on a number line, if possible.

1) 4x < 12	2) $-6 > \frac{x}{3}$	3) 2x + 1 > 7
4) $7 \ge 2x - 7$	$5) -4 \ge 4 - \frac{x}{2}$	6) $3x - 4 < 2x + 5$
7) $7x < 3 + 7(x - 1)$	8) $4(2-x) \ge -(x-5)$	9) $\frac{3}{4} < 6 - \frac{1}{2}x$
10) $8 < 2(4 - x)$	11) $-2 < x - 2 \le 1$	12) $-6 \le 3 + x < 4$
13) $5(2x+1) - 3(x+1) < 7$	x + 5	14) $1 + 2x < -9$ or $1 + 2x > 9$
15) $-6x > 18$ or $12 + 3x \ge 0$		16) $1 - 4x \le 3 - 5x \le x - 3$
17) $5 - x \le 3 - 2x$ or $x + 2 >$	3x - 2	18) $-7 > -1 + 2x$ and $-1 + 3x \ge 8$