Essential Question: How do we graph linear functions written in standard form?
Do Now: Solve for \boldsymbol{y} in each equation.
a) $y-5=x$
b) $2 y=2 x-4$
c) $3 x+6 y=12$

Graphing Linear Functions in Standard Form

Recall that a Linear Function is a function whose graph is a line. A Linear Function is easy to graph when it is in the form $\boldsymbol{y}=\mathbf{m x}+\mathbf{b}$.

The standard form of a linear function is $\mathbf{A x}+\mathbf{B} \boldsymbol{y}=\mathbf{C}$, where A, B and C are real numbers. How do we rewrite these functions in $\boldsymbol{y}=\mathbf{m} \boldsymbol{x}+\mathbf{b}$ form?

1. $30 x-10 y=50$
2. $2 x-y=1$
3. $-4 x+3 y=9$
4. $x-5 y=-15$

Let's graph!

5. Draw the graph of $4 x+2 y=-6$.

\boldsymbol{x}	\boldsymbol{y}

How can our graphing calculator help us graph a linear function?

6. $3 y+2 x=-6$

Domain:

Range:

\qquad
ITAKEAWAY
Creating a table of values for a linear function is easiest when the equation is written in \qquad form.
\qquad
Directions: Create a table of values for each equation and graph the function.

1. $-5 y=5+15 x$

Domain: \qquad

Range:

2. $4 y-x=-16$

Domain: \qquad
Range: \qquad

3. Claire says that the solution sets to $4 \boldsymbol{x}+2 \boldsymbol{y}=9$ and $\boldsymbol{y}=-2 \boldsymbol{x}+4.5$ are the same. Do you agree or disagree? Justify your response.

