### 8 Algebra CC

### Essential Question: How do we graph linear functions?

### Do Now:

- 1) Recall that a **function** is an input-output relationship that has exactly one output for each input.
- 2) Consider the following function rule: *The output is equal to four more than two times the input.*
- 3) Using the variable **y** to represent the output values and using the variable **x** to represent the input values, write the function rule algebraically.

Function Rule:\_\_\_\_\_

| ? <mark>`</mark> | <b>Think about this</b><br>Is it possible to crea | te a graj | oh that repr | eser | nts | thi: | s ru | le? |   |   | Î |   |   |          |              |          |   |   |
|------------------|---------------------------------------------------|-----------|--------------|------|-----|------|------|-----|---|---|---|---|---|----------|--------------|----------|---|---|
| x                |                                                   | у         | (x, y)       |      |     |      |      |     |   |   |   |   |   |          |              |          |   |   |
|                  |                                                   |           |              |      |     |      |      |     |   |   |   |   |   |          | +            | +        |   |   |
|                  |                                                   |           |              |      |     |      |      |     |   |   | F |   |   |          | +            | +        |   |   |
|                  |                                                   |           |              | +    |     |      |      |     |   |   | t |   |   |          |              | <u>+</u> |   | - |
|                  |                                                   |           |              |      |     |      |      |     |   |   | F |   |   |          | $\pm$        | $\pm$    |   |   |
|                  |                                                   |           |              |      |     |      |      |     |   |   | F | _ |   |          | +            | +        |   |   |
|                  |                                                   |           |              |      |     |      |      |     |   |   |   |   |   |          | $\downarrow$ | <b>—</b> |   |   |
| · · · · ·        |                                                   |           |              |      |     |      |      |     | + | + | ╞ | - | + | $\vdash$ | +            | +        | + |   |

Domain of the Function:

Range of the Function:\_\_\_\_\_

## **Linear Functions**

- A linear function is a function whose graph is a \_\_\_\_\_\_
- Linear functions can be graphed by setting up a table of inputs and outputs (table of values)
- How do we create a table of *x* and *y* values?
  - If the coefficient of x is an integer, use x values -2, -1, 0, 1, 2
  - If the coefficient of *x* is a fraction, use multiples of the denominator for your *x* values
- How do we graph the line?
  - Plot the points in the table, connect them and draw an extended line
  - o Label the line with the equation

**Reminder**: The table of values only shows *some* of the input and output values. The graph displays all of the input and output values.

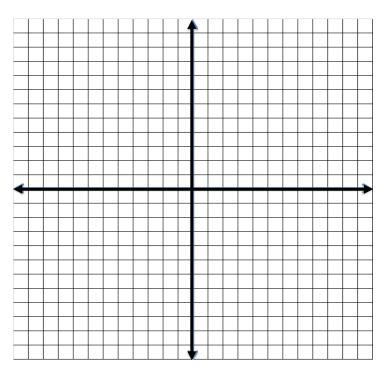
# Let's try some more examples....

| Draw | the graph of <b>y = -x – 4</b>     |     |                         |  |  |     |        |   | <br>- | - |   |   |          |
|------|------------------------------------|-----|-------------------------|--|--|-----|--------|---|-------|---|---|---|----------|
| Bran |                                    |     |                         |  |  | +   |        |   | -     |   |   | - | +        |
| x    |                                    | У   | ( <i>x</i> , <i>y</i> ) |  |  |     |        |   |       |   |   |   |          |
| ~    |                                    | ,   | (~, •)                  |  |  |     |        |   |       |   |   |   | t        |
|      |                                    |     |                         |  |  |     |        |   |       |   |   |   |          |
|      |                                    |     |                         |  |  |     |        |   |       |   |   |   |          |
|      |                                    |     |                         |  |  |     |        |   |       |   |   |   |          |
|      |                                    |     |                         |  |  |     |        |   |       |   |   |   |          |
|      |                                    |     |                         |  |  |     |        |   |       |   |   |   |          |
|      |                                    |     |                         |  |  |     |        |   |       |   |   |   |          |
|      |                                    |     |                         |  |  |     |        |   |       |   |   |   |          |
|      |                                    |     |                         |  |  |     |        |   |       |   |   |   |          |
|      |                                    |     |                         |  |  | +   |        |   |       |   |   |   |          |
|      |                                    |     |                         |  |  |     |        |   |       | _ |   | _ |          |
|      |                                    |     |                         |  |  |     |        |   |       |   |   |   | -        |
|      |                                    |     |                         |  |  | + + |        |   |       | _ |   |   | _        |
|      |                                    |     |                         |  |  |     |        | _ |       |   |   | _ | $\vdash$ |
|      |                                    |     |                         |  |  | + + |        |   |       | _ |   | _ | -        |
|      |                                    |     |                         |  |  |     |        |   |       |   | _ | _ |          |
|      |                                    |     |                         |  |  |     |        |   |       |   |   |   |          |
|      |                                    |     |                         |  |  |     |        |   | -     | _ |   | _ |          |
|      |                                    |     |                         |  |  |     | •      |   |       |   |   |   |          |
|      |                                    |     |                         |  |  |     |        |   |       |   |   |   |          |
|      |                                    |     |                         |  |  |     | ↓<br>↑ |   |       |   |   |   |          |
| Drou | with a graph of $u = \frac{1}{v}$  | . 1 |                         |  |  |     | ↓<br>↑ |   |       |   |   |   |          |
| Drav | w the graph of $y = -\frac{1}{2}x$ | + 1 |                         |  |  |     |        |   |       |   |   |   |          |
| Drav | w the graph of $y = -\frac{1}{2}x$ | + 1 |                         |  |  |     |        |   |       |   |   |   |          |
| Drav | w the graph of $y = -\frac{1}{2}x$ | +1  |                         |  |  |     |        |   |       |   |   |   |          |
| Drav | w the graph of $y = -\frac{1}{2}x$ | +1  |                         |  |  |     |        |   |       |   |   |   |          |
| Drav | w the graph of $y = -\frac{1}{2}x$ | + 1 |                         |  |  |     |        |   |       |   |   |   |          |
| Drav | w the graph of $y = -\frac{1}{2}x$ | +1  |                         |  |  |     |        |   |       |   |   |   |          |
| Drav | w the graph of $y = -\frac{1}{2}x$ | +1  |                         |  |  |     |        |   |       |   |   |   |          |
| Drav | w the graph of $y = -\frac{1}{2}x$ | +1  |                         |  |  |     |        |   |       |   |   |   |          |
| Drav | w the graph of $y = -\frac{1}{2}x$ | +1  |                         |  |  |     |        |   |       |   |   |   |          |
| Drav | w the graph of $y = -\frac{1}{2}x$ | +1  |                         |  |  |     |        |   |       |   |   |   |          |
| Drav | w the graph of $y = -\frac{1}{2}x$ | + 1 |                         |  |  |     |        |   |       |   |   |   |          |
| Drav | w the graph of $y = -\frac{1}{2}x$ | + 1 |                         |  |  |     |        |   |       |   |   |   |          |
| Drav | w the graph of $y = -\frac{1}{2}x$ | +1  |                         |  |  |     |        |   |       |   |   |   |          |
| Drav | w the graph of $y = -\frac{1}{2}x$ | + 1 |                         |  |  |     |        |   |       |   |   |   |          |
| Drav | w the graph of $y = -\frac{1}{2}x$ | + 1 |                         |  |  |     |        |   |       |   |   |   |          |

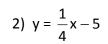
**a)** Is the ordered pair (585, -291.5) part of the graph of  $y = -\frac{1}{2}x + 1$ ?

**b)** Is the ordered pair (426, -214) part of the graph of  $y = -\frac{1}{2}x + 1$ ?

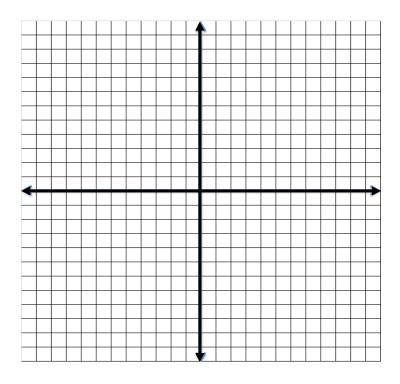



| Α                                             | _ function is a function whose graph i  | is a picture of a straight line. |
|-----------------------------------------------|-----------------------------------------|----------------------------------|
| All the ordered pairs on the line represent   | all the input and output values of the  | function.                        |
|                                               |                                         |                                  |
| In order to graph a linear function, create a | a                                       | ·                                |
| In general, when choosing the x-values for    | the table, use -2, -1, 0, 1, 2 when the | coefficient of <i>x</i> is an    |
| and use                                       |                                         | of the denominator when          |
| the coefficient of <i>x</i> is a fraction.    |                                         |                                  |

### 8 Algebra CC


HW #

Set up a table of values and draw the graph of each function. State the **<u>domain</u>** and **<u>range</u>** in interval notation.


1) y = -2x + 3



|          |  |  |  |  |  | - | - |  |  |  |  |      |          |
|----------|--|--|--|--|--|---|---|--|--|--|--|------|----------|
| _        |  |  |  |  |  |   | - |  |  |  |  |      |          |
|          |  |  |  |  |  |   | _ |  |  |  |  |      |          |
|          |  |  |  |  |  |   |   |  |  |  |  |      |          |
|          |  |  |  |  |  |   |   |  |  |  |  |      |          |
|          |  |  |  |  |  |   |   |  |  |  |  |      |          |
|          |  |  |  |  |  |   |   |  |  |  |  |      |          |
|          |  |  |  |  |  |   | - |  |  |  |  | <br> |          |
|          |  |  |  |  |  |   | - |  |  |  |  |      |          |
|          |  |  |  |  |  |   |   |  |  |  |  |      |          |
|          |  |  |  |  |  |   |   |  |  |  |  |      |          |
|          |  |  |  |  |  |   |   |  |  |  |  |      |          |
|          |  |  |  |  |  |   | - |  |  |  |  |      |          |
|          |  |  |  |  |  |   |   |  |  |  |  |      |          |
| +        |  |  |  |  |  |   | - |  |  |  |  |      | 1        |
| 4        |  |  |  |  |  |   |   |  |  |  |  |      | *        |
| 4        |  |  |  |  |  |   |   |  |  |  |  |      | <b></b>  |
| <b>+</b> |  |  |  |  |  |   |   |  |  |  |  |      | ◆        |
| <b>+</b> |  |  |  |  |  |   |   |  |  |  |  |      | <b></b>  |
| <b>←</b> |  |  |  |  |  |   |   |  |  |  |  |      | <b></b>  |
| •        |  |  |  |  |  |   |   |  |  |  |  |      | ▲        |
| •        |  |  |  |  |  |   |   |  |  |  |  |      | ◆        |
| •        |  |  |  |  |  |   |   |  |  |  |  |      | ▲        |
| ▲        |  |  |  |  |  |   |   |  |  |  |  |      | ▲        |
|          |  |  |  |  |  |   |   |  |  |  |  |      | ▲        |
|          |  |  |  |  |  |   |   |  |  |  |  |      | <b>▲</b> |
|          |  |  |  |  |  |   |   |  |  |  |  |      | <b>▲</b> |
|          |  |  |  |  |  |   |   |  |  |  |  |      | <b>▲</b> |



3) y = 3x



Determine if the point (-25.25, -75.75) is part of the graph of the function y = 3x. Justify your response.