Essential Questions: What is a function? How can we determine if a relation is a function?

Do Now: Carlos needs to buy some new pencils from the school supply store at his school. Carlos asks his classmates if they know how much pencils cost. Angela says she bought 2 pencils for \$0.50. Paige bought 3 pencils for \$0.75, and Spencer bought 4 pencils for \$1.00.

Think about this:

We can think about the rule for finding the price of pencils as a machine. If Carlos puts the number of pencils he wants to buy into the machine, the machine applies the rule and tells him the total cost of that number of pencils.

Number of Pencils	Rule	Total Cost	
2	. 25 (2)	.50	
3	. 25 (3)	.75	
4	. 25 (4)	1.00	
x	.25(x)	.25 X	

- A) Using the prices presented in the problem, complete the table above.
- B) How much does one pencil cost? 25
- C) Using your rule, find the cost of 15 pencils. $.25 \times .25 (15)$

D) Can this relationship (rule) be graphed?

(dependent)

(dependent)

(dependent)

(ost of pencils pencils pencils pencils

(independent pencils pencils)

This is a discrete function (it does not make sense to connect all the valves)

Functions

A function is a relation (a set of ordered pairs) in which each input (x-value) is assigned to exactly one output (y-value).

Domain:

the x values of the function (input)
the y values of the function (output) Range:_

Functions can be represented in multiple ways.

Ordered Pairs

(2,1) Output Input 1 2 4 2 3 6

Mapping Diagram

Graph

How can I determine if a relation is a function from a set of ordered pairs?

Points	Mapping Diagram	Function? Yes or No
{(2, 1), (3, 0), (4, 2), (4, -2)}	2 3 4 0 2	No An input (4) has two distinct (different) outputs (-2 and 2)
{(1, -2), (2, 1), (3, 0), (4, 1)}	1 2 3 4	Yes every input has only one output

Let's apply what we've learned.

1) Determine which mapping diagram is a function. Justify your response.

Yes every input has only one output

No input "a" has two different outputs, "d" and "e"

2) Determine if the relation is a function. Be ready to justify your response.

each has input one only one

domain	2	5 '	7	25	42
range	8	2	5	5	10

Function

input "4" in has two or has two or different outputs, "5"

input	4	4	3	2	1
output	4	5	6	7	8

function

 x
 -1
 -5
 -7
 -3
 -9

 y
 2
 2
 2
 2
 2

Function

each that energy one put

3) Think about this...

(teaching regular classes)

Given: {Mrs. Gizzi, Ms. Fonseca and Mrs. Huntley} {All 8th grade algebra students}

- a) Which students are assigned to which teacher?
- b) Is the assignment of math teachers to students a function? No, the math teachers have more than one student
- Gizzi

 d
 e
 n
 t
 s
- c) Is the assignment of students to math teachers a function?

yes, each student has only one regular math class teacher

How can I determine if a graph is a function?

Vertical Line Test

- Used to determine if a graph is a function.
- A vertical line must pass through exactly one point on each part of the graph for the graph to be a function.
 - 4) Which graphs represent functions?

5) Which diagram represents a relation in which each member of the domain corresponds to only one member of its range?

Not a function

The Take Away We can determine if relationships represent functions.
The state of the s
A mapping diagram shows a function if only one arrow is drawn
from each input value
A table of values or a set of ordered pairs represents a function ifeach_input
corresponds (matches) to only one output
A graph represents a function if it passes the vertical line test
(a vertical line intersects the graph in only one place)

TURN AND TALK

- 1) Which set of ordered pairs is not a function?
 - (1) {(0,0), (1,1), (2,2), (3,3)}
 - (3) {(4,1), (5,1), (6,1), (7,1)}

(2) {(1,2), (3,4), (4,5), (5,6)} (4)}{(3,1), (2,1), (1,2), (3,2)} input "3" distinct
has two distinct
outputs
"2"

- 2) Which relation represents a function?
 - (1) ((0,3), (2,4), (0,6)) input "0" has two distinct outputs
 - (2) ((-7.5), (-7.1), (-10,3), (-4,3)) input "-7" has two distinct outputs
 - (3) {(2,0), (6,2), (6,-2)} input 6 has two distinct outputs
 (4) ((-6,5), (-3,2), (1,2), (6,5)} every input has only one output
- 3) Given the relation. $R = \{(-2,3), (a, 4), (1,9), (0,7)\}$ Which replacement for a makes this relation a function?
 - (1) 1
- (2) -2
- (3) 0
- (4) 4
- any number that has not been used as an input already

4) Which graph represents a function?

the others fail the vertical line test

5) Using a mathematical model (mapping diagram, table of values, ordered pairs, graph), give an example of a relation that is a function. Give an example of a relation that is not a function. Explain why each of your examples is a function or not a function.

[answers will vary] <u>not a function</u>

not a function fails the vertical line test because it touches the graph in two places

has two distinct outputs

input (domain)	output (range)
6	-2 6
5	7 input
4	-1 has two different
6	3 different
7	5

functions

passes the vertical line test any vertical line drawn touches the graph in only one place

each has input has only one output

$$\begin{cases} (5,0), (3,5), (2,0) \end{cases}$$

input (domain)	output (range)
()	2
3	-5
6	7
» 11	2