x > 6

Do Now:	Consider the inequality $6 > 4$.	Perform the indicated operations stated in the
	table below.	

6 > 4	Is the result true or false?
a) Add 3 to both sides	6+3>4+3 9 > 7 True
b) Subtract 3 from both sides	
c) Multiply by 2 on both sides	
d) Divide by 2 on both sides	
e) Multiply by -2 on both sides	
f) Divide by -2 on both sides	

Based on letters (e) and (f), draw a conclusion about multiplying or dividing both sides of an inequality by a negative number.

Determine the solution set to each inequality.

 1. 2x + 6 > 20 2. $-4x - 8 \ge 16$

Think about this...

Are there other ways to describe the solution set to an inequality? Let's consider the solution sets from the examples above.

Solution Set	Graph of Solution Set	Interval Notation
x > 7	← → →	
x ≤ -6	← → →	

Interval Notation

(means "not included"	\bigcirc
[means "included"	\bullet

Remember	∞	and	$-\infty$	always use)
----------	----------	-----	-----------	------------	---

Example: all numbers greater than -3	Example: all numbers less than or equal to 5
Inequality: x > -3	Inequality: $x \le 5$
Graph:	Graph:

Interval Notation: _____ Interval Notation: _____

MORE EXAMPLES:

Determine the solution set to the inequality. Represent the solution set on a number line and in interval notation.

3. $-2(c + 4) - 1 \le 3$ 4. $6 - a \le 15$ 5. 3y + 7 > 6(y - 2) + 9

6. Solve $7x - 3(4x - 8) \le 6x + 12 - 9x$ algebraically. If x is a number in the interval [4, 8], state all integers that satisfy the given inequality.

TODAY'S TAKE AWAY
The solution sets of inequalities can be described using a or using
notation. When solving inequalities, remember to
the inequality symbol when multiplying or dividing both sides
of the inequality by a negative number.

HW #

Determine the solution set to the inequality. Represent the solution set on a number line and in interval notation.

1.
$$8y + 4 \le 7y - 2$$

2. $4(x - 3) > 2(x - 2)$

3. 6a - 5 < 7a + 4

4. $13x \le 9(1 - x)$

5. Solve 7 - $\frac{2}{3}x < x$ - 8 algebraically. If x is a number in the interval [9, 15), state all integers that satisfy the inequality.