Essential Questions: How do we solve simple inequalities? How can we describe the solution set to an inequality?

Do Now: Consider the inequality $6>4$. Perform the indicated operations stated in the table below.

$6>4$	Is the result true or false?	
a) Add 3 to both sides	$6+3>4+3$	
	$9>7$	True
b) Subtract 3 from both sides		
c) Multiply by 2 on both sides		
d) Divide by 2 on both sides		
e) Multiply by -2 on both sides		
f) Divide by -2 on both sides		

Based on letters (e) and (f), draw a conclusion about multiplying or dividing both sides of an inequality by a negative number.

Solving Simple Inequalities

Inequalities

An inequality is a statement, using an inequality symbol, that compares two expressions that are not equal.

A solution to an inequality is any value, when replaced by the variable, makes the inequality true.

- Use properties of inequality to solve.
- When multiplying or dividing both sides of an inequality by a negative number, "flip" the inequality sign in order to make the statement true.
- Represent the solution set to the inequality on a number line.

Determine the solution set to each inequality.

1. $2 x+6>20$
2. $-4 x-8 \geq 16$

Think about this...
Are there other ways to describe the solution set to an inequality? Let's consider the solution sets from the examples above.

Solution Set	Graph of Solution Set	Interval Notation
$x>7$	\longleftrightarrow	
$x \leq-6$	\longleftrightarrow	

Interval Notation

(means "not included"
[means "included"

Remember: ∞ and $-\infty$ always use)

Example: all numbers greater than -3 Example: all numbers less than or equal to 5
Inequality: $x>-3$
Graph:

Interval Notation: \qquad Interval Notation: \qquad

MORE EXAMPLES:

Determine the solution set to the inequality. Represent the solution set on a number line and in interval notation.
3. $-2(c+4)-1 \leq 3$
4. $6-a \leq 15$
5. $3 y+7>6(y-2)+9$

Interval Notation \qquad

Interval Notation
6. Solve $7 x-3(4 x-8) \leq 6 x+12-9 x$ algebraically. If x is a number in the interval $[4,8]$, state all integers that satisfy the given inequality.

TODAY'S TAKE AWAY....

The solution sets of inequalities can be described using a \qquad or using notation. When solving inequalities, remember to the inequality symbol when multiplying or dividing both sides of the inequality by a negative number.

Determine the solution set to the inequality. Represent the solution set on a number line and in interval notation.

1. $8 y+4 \leq 7 y-2$
2. $4(x-3)>2(x-2)$
3. $6 a-5<7 a+4$
4. $13 x \leq 9(1-x)$

5. Solve $7-\frac{2}{3} x<x-8$ algebraically. If x is a number in the interval $[9,15)$, state all integers that satisfy the inequality.
