Essential Question: How do we solve equations involving fractions?

Do Now: Solve each equation.

(a)
$$3(x+2) = 3x+6$$

infinitely many Solutions

(b)
$$3x + 2 - 2x = 0.5(2x + 8)$$

$$x+2=x+4$$

$$x = x + a$$

no solution

Identity Equations	张 , 这样
an equation in which the	ane
variable has infinitely	NO V
many solutions.	vario
a=a	state

No solution Equations

an equation in which

NO value for the

variable will make the

statement true. a = b

Solving Equations with Fractions

Simplify each expression.

The factor is a MULTIPLE of the

a.
$$\frac{5}{20} \left(\frac{1}{4} \right)$$

5

b.
$$\frac{3}{15} \left(\frac{x}{5} \right)$$

3x

c.
$$\frac{2}{16}\left(\frac{x+1}{8}\right)$$

2(x+1)

2x+2

d.
$$12\left(\frac{x}{6} - \frac{x}{3}\right)$$

祖(文) - 地(美)

2x - 4x

-2x

denominator therefore the denominator becomes 1

How do we solve equations with fractions?

2 Methods:

1) Multiply the Equation by the LCD (Least Common Denominator)

- Find the LCD of all denominators.
- Multiply both sides of the equation by the LCD.
- · Simplify and solve.
- · Check solution.

A)
$$\frac{2x}{6} = \frac{2x-6}{4} + 1$$
 LCD=12
 $\frac{1}{2}(\frac{2x}{4}) = \frac{1}{2}(\frac{2x-6}{4}) + \frac{1}{2}(1)$
 $\frac{2(2x)}{6} = 3(2x-6) + 12$
 $\frac{4x}{6} = 6x - 18 + 12$
 $\frac{4x}{6} = 6x - 6$
 $\frac{-2x}{6} = -6$
 $\frac{x}{6} = \frac{2x-6}{4} + 1$

B)
$$\frac{3x}{5} - \frac{x+1}{2} = 6$$
 $2 \text{IO}(\frac{3x}{5}) - \frac{5}{10}(\frac{x+1}{3}) = 10(6)$
 $2(3x) - 5(x+1) = 60$
 $6x - 5x - 5 = 60$
 $x - 5 = 60$
 $x = 65$

2) Use Cross Products (only works when an equation is a proportion)

$$\frac{a}{b} = \frac{c}{d}$$
 then $ad = cb$

$$12x = 9(x-1)$$

 $12x = 9x - 9$
 $3x = -9$
 $x = -3$

$$7(4x-2) = 11(3x-4)$$

$$28x-14 = 33x-44$$

$$-14 = 5x-44$$

$$30 = 5x$$

6 = x