Essential Question: How can we use the properties of equality to solve equations?

Do Now: Compare an	d Contrast A and B.	Compare	Contrast
A. 2x - 5 + 3x	B. 2x - 5 + 3x = 25		

Solving Equations

The **properties of equality** justify the series of **inverse operations** that are performed in order to solve an equation.

Addition Property of Equality	If a = b, then a + c = b + c
Subtraction Property of Equality	If a = b, then a - c = b - c
Multiplication Property of Equality	If a = b, then ac = bc
Division Property of Equality	If a = b, then $\frac{a}{c} = \frac{b}{c}$, $c \neq 0$

Examples:

Equation	Justification	Check
x + 9 = 1/		
x - 10 = 50		

Equation	Justification	Check
4 40		
4x = 68		
$\frac{x}{2} = 2$		
-5		

More Examples:

1 y = 8	2.	$\frac{3}{4}$ × = 18	35x - 4 = 16

4.
$$2(3x - 5) = -4$$
 5. $\frac{1}{2}m + 4 - \frac{5}{2}m = -3$ 6. $5x - 3(x - 1) = -15$

THINK ABOUT THIS....

The equation, 7(x - 9) = -42 is solved in two different ways. Examine each method below.

1 st Method	2 nd Method
7 (x - 9) = -42	$\frac{7(x-9)}{7} = \frac{-42}{7}$
7x - 63 = -42	• <i>i</i>
+ 63 +63	x - 9 = -6 +9 +9
$\frac{7\times}{7} = \frac{21}{7}$	x = 3
x = 3	

What steps were taken in each method? Does performing the steps in a different order affect the solution?

Looking at the second method used to solve the equation, how might this method help you solve the equation below?

 $\frac{3}{7}(5x-2)=12$

Find the value of x that makes each equation true. <u>Check your solution using your</u> <u>calculator</u>.

1.
$$3x - 2 = 14$$
 2. $3(x - 9) = 30$

3.
$$8 = 2 + 3(x - 1)$$

4. $\frac{1}{2}(4x - 6) - 16 = 0$

5. Without using the distributive property, solve the equation below. *Helpful Hint:* Think about the multiplication property of equality.

$$\frac{7}{3}\left(x+2\frac{4}{5}\right)=21$$