Essential Question: How do we simplify polynomial expressions with multiple operations?
Do Now: Consider the two expressions below. Do you see any commonality?
Think about this: How would you simplify expression A? How would you simplify expression B?
a) $(4)(5)+(7)(10)$
b) $(x+1)(x-1)+(2 x-5)(x+6)$

Simplifying Polynomial Expressions

1) $3 x(5-4 x)+6(3-2 x)$
2) $3\left(y^{3}+8 y\right)-2\left(y^{3}+5\right)$
$\substack{\text { Don't } \\ \text { R. } \\ \text { FRGET! }}$
\mathbf{P}
\mathbf{E}
\mathbf{M} or \mathbf{D}
A or S
3) $(x-4)(x+4)+(x+6)(2 x+5)$
4) $-\frac{3}{2}\left(8 a+2 a^{2}\right)\left(a^{2}-a-9\right)$
5) $\left(x^{2}+5 x-10\right)-(x+2)^{2}$
6) Find the result when the sum of $x^{2}-2 x+7$ and $6 x-9$ is multiplied by $\frac{1}{2} x^{3}$.

Always follow the
when simplifying polynomial expressions.

Turn and Talk

1) Subtract $(3 x-1)^{2}$ from $12 x$. Represent your final answer as a simplified polynomial expression written in standard form.
2) Celina says that each of the following expressions below is actually a binomial in disguise. Do you agree or disagree? Justify your response.
a) $5 a b c-2 a^{2}+6 a b c$
b) $5(a-1)-10(a-1)+100(a-1)$
c) $\left(2 \pi r-\pi r^{2}\right)(r)+\left(2 \pi r-\pi r^{2}\right)(r)$
3) The volume of a rectangular pyramid is one-third the product of the area of its base and height Represent the volume of a rectangular pyramid as a polynomial expression in simplest standard form whose base has an area of $\mathbf{3 x ^ { 2 }}+\mathbf{1 2 x}+\mathbf{9}$ square feet and whose height is $\boldsymbol{x}+\mathbf{3}$ feet.
Use appropriate units in your final answer.

