Essential Question: How do we multiply polynomials?

Do Now:
Jillian, a $4^{\text {th }}$ grade student, is asked to find the product of 23 and 42.
She writes the following on the chalkboard.
$(20+3) \times(40+2)$
$800+40+120+6=966$

Can you explain what she is doing?

Multiplying Binomials

Is it possible to use Jillian's method to multiply $(2 x+3)$ and $(x+5)$?

Use the distributive property to check your work. Multiply each term of one polynomial by each term of the other polynomial.
$(2 x+3)(x+5)$

Use the distributive property or a box diagram in order to multiply the binomials below.

1. $(x+8)^{2}$
2. $\left(3 x^{2}-2 x\right)(x+5)$

Multiplying Polynomials

Jillian was asked the following day to multiply 342 by 23 . She did so by writing the following.

$$
(300+40+2) \times(20+3)
$$

How does Jillian's process help us multiply the following polynomials?
4. $\left(3 x^{2}+4 x+2\right)(2 x+3)$
5. $(k-2)\left(k^{2}-k+1\right)$
6. $\left(2 x^{2}+10 x-1\right)\left(x^{2}-6 x+1\right)$
7. Represent the product of 3 consecutive integers as a polynomial expression in simplest form. Let \mathbf{x} represent the first integer.

Helpful Hint: To represent consecutive integers algebraically, think about them numerically first. An example of a set of consecutive integers is 3, 4, 5.
$1^{\text {st }}$ Integer: \mathbf{x}
$2^{\text {nd }}$ Integer: \qquad $3^{\text {rd }}$ Integer: \qquad

Today's Take Away...
In order to multiply polynomials, use the \qquad Property. Sometimes it's helpful to create a \qquad

Perform the indicated operation.

1. $\left(10 p^{2}-2 p+1\right)+\left(-5 p^{2}-3 p+12\right)$
2. $\left(-d^{2}+19 d-8\right)-\left(-5 d^{2}-6 d+12\right)$
3. $\left(6 a^{2} b^{5}\right)(3 a b)$
4. $2 a^{2}\left(5 a^{3}+3 a^{2}+6 a+1\right)$
5. $(x-5)^{2}$
6. $\left(3 x^{2}-1\right)(2 x+5)$
7. $(3 x-4)\left(-2 x^{3}+5 x-6\right)$
8. $\left(y^{2}-5 y+4\right)(y+2)$
9. Tina has two brothers. One brother is seven years older than Tina and the other brother is four years younger than Tina. If Tina's age is represented by \mathbf{x}, represent the product of all three of their ages as a polynomial expression in simplest form.
Hint: Write expressions to represent the brothers' ages in terms of \mathbf{x}.

$$
\begin{aligned}
\mathrm{x} & =\text { Tina's age } \\
& =\text { older brother's age } \\
\ldots & =\text { younger brother's age }
\end{aligned}
$$

