Algebra RH

Essential Question: How do we graph absolute value and square root functions?

Do Now: Solve for x in each equation

1. $|2 x+1|=9$
2. $3|x-4|+2=8$
3. $|4 x-7|=x+2$
4. $-2|x|=12$

Complete the table of values for the parent function, $f(x)=|x| .(|x|$ is found under the MATH Key: MATH \rightarrow NUM \rightarrow 1:abs) Use the table of values to complete the graph.

x	$f(x)=\|x\|$
-3	
-2	
-1	
0	
1	
2	
3	

What is the minimum value of the function? \qquad

State the domain: \qquad State the range: \qquad

State the domain over which the function is increasing: \qquad

ABSOLUTE VALUE FUNCTIONS: One of the most recognized piecewise defined functions
When finding the range of an absolute value function, find the vertex (the turning point).

- If the graph opens upwards, the range will be greater than or equal to the
y-coordinate of the vertex.
- If the graph opens downward, the range will be less than or equal to the
y-coordinate of the vertex.
The average rate of change is constant on each straight line section (ray) of the graph.

Examples: Graph each absolute value function below. State the domain and range for each function.

1) $y=2|x|$

2) $y=\frac{1}{2}|x|+3$

3) $y=-|x|-2$

4) $y=-\frac{1}{4}|x-1|$

A radical equation is an equation in which the variable is under the radical symbol (in the radicand).

$$
\sqrt{x}+3=10
$$

is a radical equation

$$
x+\sqrt{3}=10
$$

is NOT a radical equation

To solve radical equations:

1. Isolate the radical to one side of the equal sign.
2. If the radical is a square root, square each side of the equation.
3. Solve the resulting equation.

Examples:

1. $\sqrt{x}=5$
2. $\sqrt{\frac{x}{2}}=2$
3. $\sqrt{2 x+4}-5=0$
4. $\sqrt{3 x-4}=\sqrt{2 x-6}$

GRAPHING SQUARE ROOT FUNCTIONS - AKA: RADICAL FUNCTIONS

Graph $f(x)=\sqrt{x}$.
(a) Create a table of values for input values of x for which you can find rational square roots.

x				
$f(x)=\sqrt{x}$				

(c) What is the domain of this function?
(d) What is the range of this function?
(b) Graph the function on the grid provided.

(e) Circle the correct choice below that characterizes $f(x)=\sqrt{x}$.

$$
f(x) \text { is always decreasing }
$$

$$
f(x) \text { is always increasing }
$$

Examples: Graph each square root function below. State the domain and range for each function.
For the table of values, choose inputs that create a perfect square under the radical.

1) $y=\sqrt{x}+2$

2) $y=\sqrt{x+4}$

3) $y=-2 \sqrt{x-1}$

4) $y=-\frac{1}{3} \sqrt{x}$

