Algebra RH

Essential Question: How do we graph absolute value and square root functions?

Do Now: Solve for x in each equation

1. $|2 x+1|=9$
$2 x+1=9 \quad 2 x+1=-9$
$2 x=8 \quad 2 x=-10$
1
$x-4=2 \quad x-4=-2$ $x=4$ or $x=-5$
2. $3|x-4|+2=8$
$3|x-4|=6$
$|x-4|=2$
3. $|4 x-7|=x+2$
$1 \backslash$
$4 x-7=x+2 \quad 4 x-7=-x-2$

$$
3 x=9 \quad 5 x=5
$$

$x=3$ or $x=1$
4. $-2|x|=12$

$$
|x|=-6
$$

$$
x=6 \text { or } x=2
$$

no solution the absolute value of a number is always positive

Complete the table of values for the parent function, $f(x)=|x| . \quad(|x|$ is found under the MATH Key: MATH \rightarrow NUN \rightarrow 1:abs) Use the table of values to complete the graph.

x	$f(x)=\|x\|$
-3	3
-2	2
-1	1
0	0
1	1
2	2
3	3

1 y $\operatorname{la}^{a^{2}}+h^{2}$
What is the minimum value of the function? \qquad
State the domain: $(-\infty, \infty)$ State the range: $[0, \infty)$
State the domain over which the function is increasing: \square
X values

$x>0$	$(0, \infty)$
inequality notation	interval notation

We call this the PARENT FUNCTION

the simplest function that still satisfies the definition of a certain type of function

ABSOLUTE VALUE FUNCTIONS: One of the most recognized piecewise defined functions
When finding the range of an absolute value function, find the vertex (the turning point).

- If the graph opens upwards, the range will be greater than or equal to the y-coordinate of the vertex.
- If the graph opens downward, the range will be less than or equal to the y-coordinate of the vertex.

The average rate of change is constant on each straight line section (ray) of the graph.

Examples: Graph each absolute value function below. State the domain and range for each function.

1) $y=2|x|$

Domain: $(-\infty, \infty)$ Range $[0, \infty)$
3) $y=-|x|-2 \quad y$

Domain: $(-\infty, \infty)$ Range: $(-\infty,-2]$
2) $y=\frac{1}{2}|x|+3$

Domain: $(-\infty, \infty)$ Range $[3, \infty)$

4) $y=-\frac{1}{4}|x-1|$

$$
\text { Domain: }(-\infty, \infty)
$$

$$
\text { Range: }(-\infty, 0]
$$

A radical equation is an equation in which the variable is under the radical symbol (in the radicand).

$$
\sqrt{x}+3=10
$$

is a radical equation
$x+\sqrt{3}=10$
is NOT a radical equation

To solve radical equations:

1. Isolate the radical to one side of the equal sign.
2. If the radical is a square root, square each side of the equation.

3 . Solve the resulting equation.

Examples:

1. $\sqrt{x}=5$
2. $\sqrt{\frac{x}{2}}=2$
3. $\sqrt{2 x+4}-5=0$
4. $\sqrt{3 x-4}^{2}=\sqrt{2 x-6}^{2}$
$(\sqrt{x})^{2}=(5)^{2}$
$\left(\sqrt{\frac{x}{2}}\right)^{2}=(2)^{2}$

$$
\sqrt{2 x+4}=5
$$

$x=25$

$$
\frac{x}{2}=4
$$

$$
\begin{gathered}
(\sqrt{2 x+4})^{2}=(5)^{2} \\
2 x+4=25
\end{gathered}
$$

$$
2 x+4=25
$$

$$
\begin{gathered}
3 x-4=2 x-6 \\
x-4=-6 \\
x=-2
\end{gathered}
$$

$$
x=8
$$

$$
2 x=21
$$

$$
x=10.5
$$

GRAPHING SQUARE ROOT FUNCTIONS - AKA: RADICAL FUNCTIONS
Graph $f(x)=\sqrt{x}$.

(a) Create a table of values for input values of x for which you can find rational square roots.

x	0	1	4	9
$f(x)=\sqrt{x}$	0	1	2	3

(c) What is the domain of this function?

$$
x \geq 0 \quad[0, \infty)
$$

(d) What is the range of this function?
(b) Graph the function on the grid provided.

$$
y \geq 0 \quad[0, \infty)
$$

(e) Circle the correct choice below that characterizes $f(x)=\sqrt{x}$.

$$
f(x) \text { is always decreasing }
$$

We call this the PARENT FUNCTION

Examples: Graph each square root function below. State the domain and range for each function. For the table of values, choose inputs that create a perfect square under the radical.

1) $y=\sqrt{x}+2$

Domain: $[0, \infty)$ Range: $[2, \infty)$

$$
\text { 3) } \begin{aligned}
& y=-2 \sqrt{x-1} \\
& \text { Domain : }[1, \infty) \\
& \text { Range: }\{1 \\
& \hline
\end{aligned}
$$

4) $y=-\frac{1}{3} \sqrt{x}$

$$
\begin{aligned}
& \text { Domain: }[0, \infty) \\
& \text { Range: }(-\infty, 0]
\end{aligned}
$$

