Algebra RH

Essential Question: How do we graph absolute value and square root functions?

Do Now: Solve for x in each equation

Complete the table of values for the parent function, f(x) = |x|. (|x| is found under the MATH Key: MATH \rightarrow NUM \rightarrow 1:abs) Use the table of values to complete the graph.

We call this the PARENT FUNCTION

the simplest function that still satisfies the definition of a certain type of function **ABSOLUTE VALUE FUNCTIONS**: One of the most recognized piecewise defined functions When finding the **range** of an absolute value function, find the vertex (the turning point).

- If the graph opens **upwards**, the range will be **greater than or equal** to the <u>y-coordinate of the vertex</u>.
- If the graph opens downward, the range will be less than or equal to the
- y-coordinate of the vertex.

The average rate of change is constant on each straight line section (ray) of the graph.

Examples: Graph each absolute value function below. State the domain and range for each function.

A radical equation is an equation in which the variable is under the radical symbol (in the radicand).

$$\sqrt{x} + 3 = 10$$

is a radical equation $x + \sqrt{3} = 10$
is **NOT** a radical equation

To solve radical equations:

- 1. Isolate the radical to one side of the equal sign.
- 2. If the radical is a square root, square each side of the equation.
- 3. Solve the resulting equation.

Examples:

1.
$$\sqrt{x} = 5$$

2. $\sqrt{\frac{x}{2}} = 2$
3. $\sqrt{2x+4} - 5 = 0$
4. $\sqrt{3x-4} = \sqrt{2x-6}^{2}$
($\sqrt{\frac{x}{2}}$)² = (2)²
 $\chi = 25$
 $\frac{x}{2} = 4$
 $\chi = 8$
3. $\sqrt{2x+4} = 5$
 $\sqrt{2x+4} = 5$
 $(\sqrt{2x+4})^{2} = (5)^{2}$
 $2x + 4 = 25$
 $2x + 4 = 25$
 $x = -2$
 $x = -2$

GRAPHING SQUARE ROOT FUNCTIONS – AKA: RADICAL FUNCTIONS Graph $f(x) = \sqrt{x}$. (a) Create a table of values for input values of x for which we are find extended on the function

 $[0,\infty)$

Graph
$$f(x) = \sqrt{x}$$
.

which you can find rational square roots.

x	0	1	4	9
$f(x) = \sqrt{x}$	0	1	2	3

(c) What is the domain of this function?

(d) What is the range of this function?

$$y \ge 0$$
 $[0,\infty)$

(b) Graph the function on the grid provided.

(e) Circle the correct choice below that characterizes $f(x) = \sqrt{x}$.

f(x) is always decreasing

f(x) is always increasing

We call this the PARENT FUNCTION

Examples: Graph each square root function below. State the domain and range for each function. For the table of values, choose inputs that create a perfect square under the radical.

