Algebra RH

Essential Question: How do we recognize what type of regression equation can be used to model

Do Now:

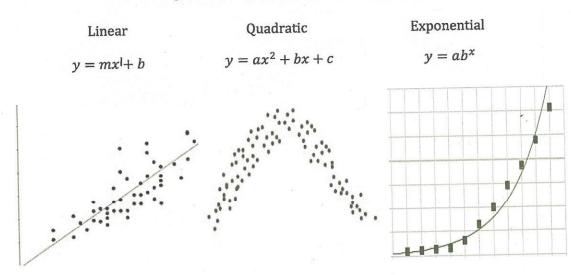
The following data shows the number of species of mammals on the International Union for Conservation of Nature's "Red List" of endangered species during the years 2004 to 2012.

2006	2007	2008	2009	2010	2011	2012
			449	450	447	446
	348		2000	2000 2007	2000 2007 200	2000 2007

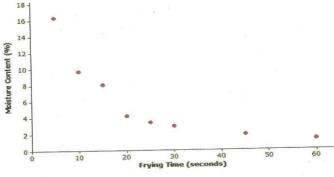
a) Using a linear regression model, find the equation of the line of best fit.

y = 15,79197995x -31305,09273

(show all values displayed by the calculator if there

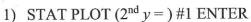

are no rounding b) Using your equation, how many species are expected to be in danger in 2016? directions) y = 15.79197995 (2016) - 31305.09273

y = 531.5388492


\$ 531 species

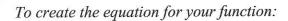
The data from a scatterplot can form a shape that indicates what type of equation should be used to approximate the relationship between the two variables.

Choosing a Linear, Quadratic, and Exponential Model



Once you view the scatterplot of a graph, you can determine what model best approximates the data. If a set of data takes on the shape of an exponential growth or decay, use an exponential regression equation for the data set. See graph below.

Calculator Corner


Remember, in order to create a scatterplot:

2) Turn On and Choose Scatter Plot

3) Use STAT EDIT to enter data into L₁ and L₂

4) ZOOM #9 (ZOOM STAT) [view the graph and decide which model to use]

STAT → CALC #4 LinReg (linear)

#5 QuadReg (quadratic)

#0 ExpReg (exponential)

Examples:

1. A population of single-celled organisms was grown in a Petri dish over a period of 16 hours. The number of organisms at a given time is recorded in the table below.

Time (hrs)	x	0	2	4	6	8	10	12	16
Number of Organisms	y	25	36	52	68	85	104	142	260

a) Determine the exponential regression equation model for these data, rounding all values to the nearest ten-thousandth.

b) Using this equation, predict the number of single-celled organisms, to the nearest whole number, at the end of the 18th hour. $X = i \Re$

$$y = 27.203(1.151)^{18}$$

 $y = 341.9578886$
 $y = 342$

Approximately 342 organisms will exist at the end of the 18th hour.

street a) D

2. About a year ago, Joey watched an online video of a band and noticed that it had been viewed only 843 times. One month later, Joey noticed that the band's video had 1708 views. Joey made the table below to keep track of the cumulative number of views the video was getting online.

exponential relationship each month, the number of views doubles (approximately)

Months Since First Viewing	Total Views		
0	843		
1	1708		
2	forgot to record		
3	7124		
4	14,684		
5	29,787		
6	62,381		

you can't enter
incomplete data
incomplete this box

(if you left this box

empty, you would

empty, almension error

on your calculator)

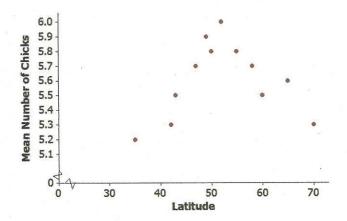
see your calculator

a) Write a regression equation that best models these data. Round all values to the nearest hundredth. Justify your choice of regression equation.

$$y = ab^{x}(x \neq 0)$$

total views 10 total views 10 x = 836.47 (2.05) x = months

1 Tcommon initial number ratio of views


b) As shown in the table, Joey forgot to record the number of views after the second month.

Use the equation from part a to estimate the number of full views of the online video that Joey forgot to record.

$$2^{nd}$$
 month $x=2$

$$\gamma = 836.47(2.05)^2$$

 $\gamma = 3515.265...$
 $\approx 3515 \text{ views}$

3. Biologists conducted a study of the nesting behavior of a type of bird called a flycatcher. They examined a large number of nests and recorded the latitude for the location of the nest and the number of chicks in the nest.

a) What type of model (*linear*, *quadratic or exponential*) would best describe the relationship between latitude and mean number of chicks?

b) One model that could be used to describe the relationship between mean number of chicks and latitude is $y = 0.175 + 0.21x - 0.002x^2$, where x represents the latitude of the location of the nest and y represents the number of chicks in the nest.

Use the quadratic model to complete the following table.

x Latitude	30 40		50	60	70	
y Mean Number of Chicks	4.675	5.375	5.675	5.575	5.075	

c) Based on this quadratic model, what is the best latitude for hatching the most flycatcher chicks? Justify your response.

looking at the graph, at approximately 52° latitude showed the most fly catcher chicks

52,5°	is the best latitude
X	5.683 the maximum point (turning) point
51	5.683 the "point" 5.687 (turning) point 5.687 (turning) point is between 5.687 52° and 53° 5.683
52	5.687 L is betwee 53
53	5.687 520 010
54	5.683

TAKE AWAY

Models can be used t	to answer	questions about how	two varia	ables are related (bivaria	te data).
Linear		Quadratic	and _	Exponential	equations are common
models that can be us	sed to des	cribe the relationship	between	two variables.	