Window Setting Xmin = 0Xmax = 1Xscl = 0.025Ymin = 0Ymax = 1Yscl = 0.025

Essential Question: How can you identify if a function is Linear, Exponential or Quadratic? Do Now:

Three cars start traveling at the same time. The distance traveled in t minutes is y miles. Complete each table and sketch all three graphs in the same coordinate plane.

(**)_	
t	v = t

(Table 1999)	CONTRACTOR OF THE STATE OF THE
t	y = t
0	0.
0.2	0.2
0.4	0.4
0.6	0.6
0.8	0.8
1.0	1.0

100	•
t	$y=2^t-1$
0	0
0.2	0.1487
0.4	0.31951
0.6	0.51572
0.8	0.7411
1.0	1

W	
t	$y=t^2$
0	0
0.2	0.04
0.4	0.16
0.6	0.36
0.8	0.64
1.0)

linear

exponential

Compare the speeds of the three cars.

a) Which car has a constant speed?

Car 1

b) Which car is accelerating the most?

Car 3

Explain your reasoning.

Car 3 was far behind the other cars for most of the race. In

order to catch up at the end (1.0 min) it had to go faster than the other two cars.

In this course you have learned about three types of functions: linear, exponential, and quadratic.

Finding the function is an important part of solving problems. What methods can be used to identify which function describes the relationship between the dependent and independent variables in a problem?

1. Identify functions from their equations.

Linear	Exponential	Quadratic
y = mx + b	$y = ab^x$	$y = ax^2 + bx + c$
Degree of the function is 1	Exponent is the unknown	Degree of the function is 2

Identify each function as linear, exponential or quadratic

a.
$$y = \frac{1}{4}(3)^{2x}$$

b.
$$y - 4 = -2(x + 1)$$

c.
$$y = 3(x+1)^2 - 2$$

quadratic

exponential

2. Identify functions from their graphs.

Linear Function

Exponential Function

Quadratic Function

LINE

CURVE

PARABOLA

Plot the points. Tell whether the points represent a linear, an exponential, or a quadratic function.

$$(0, -1), (1, 2), (2, 3), (3, 2), (4, -1)$$

3. Identifying Functions Using **Differences** or **Ratios**.

If the *difference* between values of the dependent variable is the same each time we change the independent variable by the same amount, then the function is **linear**.

The *y*-values have a common *difference* of 2.

If the *ratio* between values of the dependent variable is the same each time we change the independent variable by the same amount, then the function is <u>exponential</u>.

The *y*-values have a common *ratio* of 2.

Differences can also be used to identify **quadratic** functions. For a quadratic function, when we increase the *x* values by the same amount, the difference between *y* values will *not* be the same. However, the difference of the differences of the *y* values will be the same.

Tell whether the table of values represents a linear, an exponential, or a quadratic function.

1.

X	-2	-1	0	1	2
у	0	0.5	1	1.5	2
		7	1	10.5	- 1 + 0

linear (add 0.5)

x	-1	0	1	2	3
V	0.2	1	5	25	125

exponential (multiply by 5)

3.

х	-2	-1	0	1	2
V	0.75	1.5	3	6	12

exponential (multiply by 2) 4.

Several description of the last of the las	x	2	3	4	5	6
	У	2	4.5	8	12.5	18
-	У		7.3	7.	7	750F

quadratic (the second common difference is 1)

APPLICATIONS:

1. Match the function to the situation.

A.
$$p(x) = -16x^2 + 30x + 160$$
 B. $f(x) = 10x$

B.
$$f(x) = 10x$$

C.
$$q(x) = 2^x$$

The population of bacteria doubled every month, and the total population vs. time was recorded.

force of gravity brings it down

Melvin saves the same amount of money every month. The total amount saved after each month was recorded.

2. The table shows the shipping cost *c* (in dollars) by weight *w* (in pounds) for items from an online store.

Weight, w	1	2	3	4
Cost, c	8.5	11	13.5	16

Does a linear, an exponential, or a quadratic function represent this situation?

A linear function has a constant rate of change (common difference of this function is 2.5)

3. Analyze each table and match it to the correct equation to the right. Use the equations to fill in the missing numbers for each table.

Table A	Table B	Table C	Table D	
Table A x y 0 6 1 10 2 14 3 18 4 22 5 26	x y 0 6 <	$ \begin{array}{c cccc} x & y & & & \\ & -1 & \frac{1}{6} & & \\ \hline 0 & 1 & & \\ 1 & & & \\ 2 & 36 & & \\ 3 & & & \\ 4 & 1296 & & \\ \end{array} $	x y -1 0 0 0 6 0 1 8	Equations: $a=1$ (y intercept) $f(x) = 6^{x}$ (C) $b=6$ (ratio) $h(x) = -3(x-2)^{2} + 18$ (B) vertex (2,18) $g(x) = -2(x+1)(x-3)$ (D) roots $\{-1,3\}$ $r(x) = 4x + 6$ (A) Take y intercept of change
	e	exponential	goaldi di ic	

TAKE

How can I tell the difference between linear, exponvalues?	ential and quadratic functions from a table of
A common difference can be calculated if the function is	linear.
A common ratio can be calculated if the function is	exponential.
A common second difference can be calculated if the fu	nction is <u>quadratic</u> .