Essential Questions: In how many ways can we write a quadratic function? What information do the different forms of quadratic functions tell us?

Do Now:
Consider the quadratic equation $y=x^{2}+4 x-12$ written in standard form.
a) Rewrite the equation in vertex form.
b) Determine the vertex of the function. \qquad

Think About This...
Is there another way to write the quadratic function from the Do Now?
Terry says the function $y=x^{2}+4 x-12$ can be written in factored form.
What do you think the function looks like in factored form?
Factored Form \qquad

What does this equation tell us about the graph of the function?

Let's Review - There are three ways we can represent a quadratic function.

STANDARD FORM

$f(x)=a x^{2}+b x+c$
where $a, b, \& c$ are real numbers

When a quadratic function is written in standard form, we find the

- vertex by using $x=\frac{-b}{2 a}$ to find the x-coordinate. By substituting the x value into the function, we find the y-coordinate of the vertex.
- roots by solving the quadratic equation algebraically when $f(x)=0$ or by graphing and finding the zeros of the function (locate x-intercepts).
- y-intercept by identifying the c value.

$$
\begin{aligned}
& \text { VERTEX FORM } \\
& f(x)=a(x-h)^{2}+k
\end{aligned}
$$

where a, h and k are real numbers, (h, k) is the vertex

When a quadratic function is written in vertex form, we can determine the

- vertex by identifying (h, k) from the equation.

$$
\begin{gathered}
\text { FAGTORED FORM } \\
f(x)=a\left(x-r_{1}\right)\left(x-r_{2}\right)
\end{gathered}
$$

where a is a real number and r_{1} and r_{2} are real roots

When a quadratic function is written in factored form, we can determine the

- roots by identifying r_{1} and r_{2} from the equation.

1. The roots for two quadratic functions are given. Write the equation of each function in factored form if the a value equals -5 .
(a) $r_{1}=-2, r_{2}=3$
(b) $r_{1}=-6, r_{2}=-1$
2. Write the equation for the function of the graph given below in factored form ($a=1$).

3. Write the equation for each function in vertex form given a and the vertex.
(a) $a=1$, vertex: $(-2,-7)$
(b) $a=-2$, vertex: $(4,0)$
4. Find the vertex of the following parabolas.
(a) $f(x)=(x-7)^{2}-4$
(b) $f(x)=3(x+4)^{2}+6$
5. Write the equation, in vertex form, of the function shown in the graph below if $a=1$.

6. Which of the following equations could describe the function seen in the graph at the right? Select all that apply.
A. $y=(x+2)(x-5)$
B. $y=-2 x^{2}+4 x-1$
C. $y=(x-6)(x-10)$
D. $y=(x+5)^{2}+4$

E. $y=(x-8)^{2}-6$

Think about this...

Any equation written in the form $y=a\left(x^{2}+x-12\right)$, where a is a constant, has the same solution set as the equation $y=x^{2}+x-12$.

For example, graph the equations $y=x^{2}+x-12$ and $y=3 x^{2}+3 x-36$ on your calculator. What do you notice?

There are three forms in which to write the equation of a quadratic function:

- \qquad form: $y=$ \qquad
form: $y=$ \qquad
- \qquad form: $y=$ \qquad

Fill in the blanks.

1. The \qquad form of a quadratic function identifies the turning point.
2. The \qquad form of a quadratic function identifies the roots (zeros).
3. The \qquad form of a quadratic function identifies the \mathbf{y}-intercept.
4. For the functions below, complete \mathbf{a} and \mathbf{b}.
a) Is the vertex of the function a minimum or maximum value?
b) State the vertex (show all necessary work).
$y=\frac{1}{5} x^{2}-5 x-1$

$$
y=-3(x-7)^{2}
$$

5. Rewrite the function $y=x^{2}+10 x-3$ in vertex form by completing the square. State the vertex of the function.
6. Rewrite the function $y=3 x^{2}-48$ in factored form. State the zeros of the function.
7. Rewrite the quadratic function $y=-3(x-1)^{2}+5$ in standard form. State the y-intercept of the graph.
8. Write a quadratic function in vertex form given that $a=1$ and the vertex is $(-3,4)$.
9. Write a quadratic function in factored form given that $a=-10, r_{1}=-5$ and $r_{2}=9$.
10. For which function below is the zeros of the function -2 and 5 ?
A. $f(x)=4(x-2)(x+5)$
B. $f(x)=10 x^{2}+30 x-100$
C. $f(x)=(x-1.5)^{2}-12.25$
D. $f(x)=(x+2)^{2}+5$
