8 Algebra CC

Essential Question: How do we transform a quadratic equation written in standard form to vertex form?

Do Now:

VERTEX FORM OF A QUADRATIC FUNCTION

 $f(x) = a(x-h)^2 + k$

where h and k are real numbers and (h, k) is the vertex

Example: Convert $y = x^2 + 12x + 32$ into vertex form, and state the vertex.

1) Since we will be "completing the square," isolate $y = x^{2} + 12x + 32$ the x^2 and x terms and move the "c" term to the $y-32 = x^{2}+12x$ other side of the equal sign. $y-32+36=x^{2}+12x+36$ 2) Find the perfect square trinomial. Take half of $y+4=x^{2}+12x+36$ the coefficient of the x term, square it, and add y+4=(x+6)(x+6)it to both sides of the equation. 3) Simplify and factor the perfect square $y + 4 = (x + 6)^2$ Vertex trinomial. $y = (x+6)^2 - 4$ 4) Isolate the y term.

Rewrite the following equations in <u>vertex form</u> by completing the square and state the vertex. <u>Check your answer with the table of values on the calculator</u>. $y = a(x - h)^2 + k$

	Vertex: (h, k)
1. $y = x^2 + 2x - 4$	2. $y = x^2 - 12x + 4$

Let's try some more complicated examples.

3.
$$y = 3x^2 + 18x - 36$$

4. $f(x) = -6x^2 - 12x + 48$

A quadratic function written in <u>standard form</u> ($y = ax^2 + bx + c$) can be rewritten in <u>vertex form</u> ($y = a(x - h)^2 + k$)			
by	When the fu	nction is written in vertex	
form, the vertex can easily by identified by the ordered pair (_,).	TAKE AWAY	

For each function below written in vertex form, state the vertex of the function.

1) $y = (x + 1)^2 - 7$ 2) $y = \frac{1}{2} (x + 4)^2 - 2$ 3) $f(x) = 3(x - 1)^2 + 6$

Rewrite each quadratic function in vertex form. State the vertex.

4) $y = x^2 + 10x - 3$ 5) $g(x) = -x^2 + 6x - 14$

6) Without using your graphing calculator, determine which of the following could be the equation of the quadratic shown below. Explain your reasoning.

