Essential Question: How do we transform a quadratic equation written in standard form to vertex form?

Do Now:

a) Graph $\mathbf{y}=-\mathbf{- 2 \mathbf { x } ^ { 2 }}+\mathbf{8 x}-6$ using a table of values.
b) Determine the coordinates of the vertex. \qquad
c) State whether the vertex is a maximum or a minimum point. \qquad
d) State and graph the equation of the axis of symmetry \qquad
e) State the roots of the parabola. \qquad
f) State the \mathbf{y}-intercept. \qquad
g) State the domain of the function. \qquad
h) State the range of the function. \qquad
i) State the interval for which the function is increasing. \qquad
j) State the interval for which the function is decreasing. \qquad

VERTEX FORM OF A QUADRATIC FUNCTION

$$
f(x)=a(x-h)^{2}+k
$$

where h and k are real numbers and (h, k) is the vertex

Example: Convert $y=x^{2}+12 x+32$ into vertex form, and state the vertex.

$$
\begin{gather*}
y=x^{2}+12 x+32 \\
y-32=x^{2}+12 x \\
y-32+36=x^{2}+12 x+36 \\
y+4=x^{2}+12 x+36 \\
y+4=(x+6)(x+6) \\
y+4=(x+6)^{2} \quad \text { Vertex: } \\
y=(x+6)^{2}-4 \quad(-6,-4) \tag{-6,-4}
\end{gather*}
$$

1) Since we will be "completing the square," isolate the x^{2} and x terms and move the " c " term to the other side of the equal sign.
2) Find the perfect square trinomial. Take half of the coefficient of the x term, square it, and add it to both sides of the equation.
3) Simplify and factor the perfect square trinomial.
4) Isolate the y term.

Rewrite the following equations in vertex form by completing the square and state the vertex. Check your answer with the table of values on the calculator.
$y=a(x-h)^{2}+k$
Vertex: (h, k)

1. $y=x^{2}+2 x-4$
2. $y=x^{2}-12 x+4$

Let's try some more complicated examples.

3. $y=3 x^{2}+18 x-36$
4. $f(x)=-6 x^{2}-12 x+48$
A quadratic function written in standard form $\left(\mathbf{y}=\mathbf{a x ^ { 2 } + \mathbf { b x } + \mathbf { c }) \text { can be rewritten in vertex form } (\mathbf { y } = \mathbf { a } (\mathbf { x } - \mathbf { h }) ^ { 2 } + \mathbf { k })}\right.$
by
form, the vertex can easily by identified by the ordered pair (______ When the function is written in vertex
TAKE AWAY

For each function below written in vertex form, state the vertex of the function.

1) $y=(x+1)^{2}-7$
2) $y=1 / 2(x+4)^{2}-2$
3) $f(x)=3(x-1)^{2}+6$

Rewrite each quadratic function in vertex form. State the vertex.
4) $y=x^{2}+10 x-3$
5) $g(x)=-x^{2}+6 x-14$
6) Without using your graphing calculator, determine which of the following could be the equation of the quadratic shown below. Explain your reasoning.
A. $y=-1 / 2(x-2)^{2}-4$
B. $y=-1 / 2(x+2)^{2}-4$
C. $y=1 / 2(x-2)^{2}-4$
D. $y=1 / 2(x+2)^{2}-4$

