Essential Question: How are quadratic equations in standard form written in vertex form?
Do Now:
Given the following equations, identify the vertex, axis of symmetry, and direction of the parabola.
(a) $y=(x-5)^{2}-1$
(b) $\quad y=-(x-6)^{2}+2$

Vertex: \qquad

Axis of Symmetry: \qquad
Opens: \qquad

Vertex: \qquad
Axis of Symmetry: \qquad

Opens: \qquad

VERTEX FORM OF A QUADRATIC FUNCTION

$$
f(x)=a(x-h)^{2}+k
$$

where h and k are real numbers, (h, k) is the vertex and $x=h$ is the axis of symmetry

If you have the graph of a parabola, can you determine the exact equation of the function that created the graph?
(1) Let's look at the graph at the right.

The x-intercepts are integer values,
\qquad and \qquad .
so we know that the roots (zeros) of the equation will be $x=$ \qquad and $x=$ \qquad .

With this information we can write the equation of the quadratic in factored form, $y=$ \qquad .

BEWARE

You cannot assume that the a-value will always be 1 .

How can we determine the numeric factor, a, for this equation? (Hint... we need to check another point, i.e. the y-intercept)
(2) Given the parabolic graph at the right, the vertex is \qquad and another random point on the graph is \qquad Write the equation of the function which created the graph.

It does not appear that the roots (zeros) of this parabola cross the x-axis at integer values, so we will not be able to write the equation in factored form. However, we can write the equation in vertex form,
 $y=$ \qquad ـ.

Now, determine the value of a.

Reminder:

The zeros obtained from the x-intercepts of a graph can determine the equation of a "family" of graphs. But, ONE MORE POINT is needed to guarantee a specific, individual function's equation.

Match the following equations to their graphs.
3) $y=-4(x+1)^{2}+2$
4) $y=-\frac{1}{4}(x+1)^{2}+2$
A.

5) $y=(x+3)^{2}-1$
6) $y=(x-3)^{2}-1$
C.

Convert the following equations into vertex form by completing the square and identify the vertex.
7) $y=x^{2}+2 x-4$
8) $y=x^{2}+16 x+71$
9) $y=x^{2}-2 x-5$
10) $y=x^{2}-12 x+46$

Shown below is the equation for function $f(x)$, and the graph of parabolic function $g(x)$. Which function has the larger maximum?

$$
f(x)=-(x-4)^{2}+5
$$

