Algebra RH

Essential Question: How are quadratic equations in standard form written in vertex form?

Do Now:

Given the following equations, identify the vertex, axis of symmetry, and direction of the parabola.

(a) $y = (x-5)^2 - 1$

(b) $y = -(x-6)^2 + 2$

Vertex: _____

Axis of Symmetry: _____

Opens:_____

Axis of Symmetry: _____

Vertex:

Opens:_____

VERTEX FORM OF A QUADRATIC FUNCTION

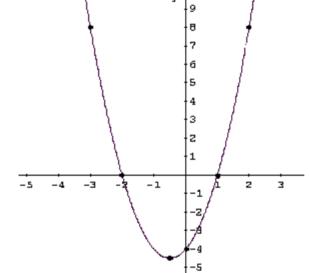
 $f(x) = a(x-h)^2 + k$

where h and k are real numbers, (h, k) is the vertex and x = h is the axis of symmetry

If you have the graph of a parabola, can you determine the exact equation of the function that created the graph?

(1) Let's look at the graph at the right.

The x-intercepts are integer values,

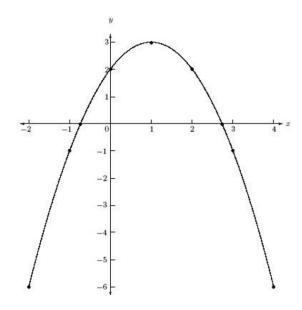

_____ and _____.

so we know that the roots (zeros) of the equation

will be *x* = _____ and *x* = _____.

With this information we can write the equation of the

quadratic in factored form, y = _____.

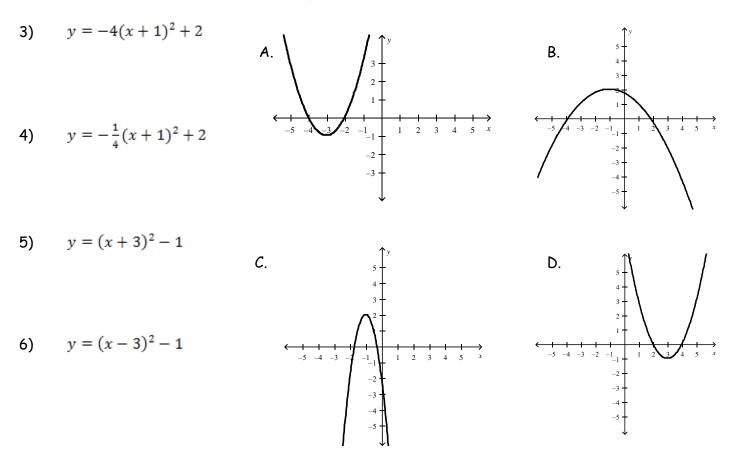

BEWARE

You cannot assume that the *a*-value will always be 1.

How can we determine the numeric factor, *a*, for this equation? (Hint... we need to check another point, i.e. the *y*-intercept)

(2) Given the parabolic graph at the right, the vertex is ______ and another random point on the graph is ______. Write the equation of the function which created the graph.

It does not appear that the roots (zeros) of this parabola cross the x-axis at integer values, so we will not be able to write the equation in factored form. However, we can write the equation in vertex form,



y = _____

Now, determine the value of a.

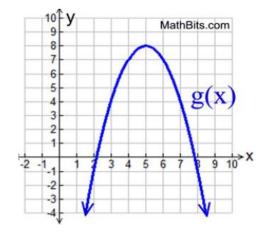
Reminder: The zeros obtained from the *x*-intercepts of a graph can determine the equation of a "family" of graphs. But, ONE MORE POINT is needed to guarantee a specific, individual function's equation.

Match the following equations to their graphs.

Convert the following equations into vertex form by completing the square and identify the vertex.

7)
$$y = x^2 + 2x - 4$$

8) $y = x^2 + 16x + 71$


9)
$$y = x^2 - 2x - 5$$

10) $y = x^2 - 12x + 46$

Shown below is the equation for function f(x), and the graph of parabolic function g(x). Which function has the larger maximum?

$$f(x) = -(x-4)^2 + 5$$

