Essential Question: What is the discriminant?

Do Now: Using the quadratic formula, find the solution(s) to the following equations
a. $x^{2}-3 x-4=0$
b. $-x^{2}+2 x-1=0$
c. $2 x^{2}-2 x+3=0$

How many solutions can a quadratic equation have?

Before solving a quadratic equation, the discriminant can be used to determine the number of real solutions.

The discriminant is the expression under the radical in the quadratic formula.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \leftarrow \text { the discriminant }
$$

To determine the number of solutions:
If $b^{2}-4 a c>0$, there are \qquad solutions. If $b^{2}-4 a c=0$, there is \qquad solution. If $b^{2}-4 a c<0$, there are \qquad solutions.

To determine the type of solutions:

If $b^{2}-4 a c$ is a perfect square, the solutions are \qquad numbers.

If $b^{2}-4 a c$ is not a perfect square, the solutions are \qquad numbers.

For each quadratic equation below:
a) Find the value of the discriminant and determine how many solutions the equation has.
b) Determine if the solution(s) are rational or irrational.

1. $x^{2}-2 x+4=0$
2. $-3 x^{2}+5 x-1=0$
3. $-x^{2}-10 x-25=0$
4. $2 x^{2}+10 x=-12$
5. $3 x^{2}-2 x=-5$
6. $x^{2}+14=-9 x$
