Essential Question: What are the roots of a quadratic function?

Do Now: Using a table of values, graph the following four quadratic functions.

Complete the following table.

Quadratic Function	x-intercept(s)	
$y = x^2 + 2x - 3$		
$y = x^2 - 6x + 9$		
$y = x^2 + 3$		
$y = x^2 + 4x - 2$		

How do we determine *x*-intercept(s)

Graphically?	Algebraically?	

$y = x^2 + 2x - 3$	$y = x^2 - 6x + 9$	$y = x^2 + 3$	$y = x^2 + 4x - 2$

Take Away: The *x*-intercepts of a quadratic function are also known as the

_____ and _____ of the related equation.

For each quadratic function below:

- Create a table of values and graph on graph paper.
- Draw and label the axis of symmetry.
- Identify the "roots" of the function (also known as the x-intercepts of the graph). If the roots are not integers, use the calculator (2nd CALC \rightarrow 2:zero) to find them. Round all roots to the nearest tenth when necessary.
- 1) $y = x^2 2x 3$ 2) $y = x^2 + 2x + 1$ 3) $y = x^2 + 4x + 1$

Without graphing the quadratic function, determine the x-intercepts (roots) of the graph.

4)
$$y = x^2 - 5x + 4$$
 5) $y = 2x^2 - 4$

Without graphing, use the quadratic formula to determine the x-intercepts (roots) of the graph.

6)
$$y = x^2 - 4x + 7$$