Essential Question: What are the roots of a quadratic function?

Do Now: Using a table of values, graph the following four quadratic functions.
a. $y=x^{2}+2 x-3$
b. $y=x^{2}-6 x+9$
c. $y=x^{2}+3$
d. $y=x^{2}+4 x-2$

Complete the following table.

Quadratic Function	x-intercept(s)
$y=x^{2}+2 x-3$	
$y=x^{2}-6 x+9$	
$y=x^{2}+3$	
$y=x^{2}+4 x-2$	

How do we determine x-intercept(s)

Graphically?	Algebraically?

$y=x^{2}+2 x-3$	$y=x^{2}-6 x+9$	$y=x^{2}+3$	$y=x^{2}+4 x-2$

Take Away: The x-intercepts of a quadratic function are also known as the and \qquad of the related equation.
\qquad

For each quadratic function below:

- Create a table of values and graph on graph paper.
- Draw and label the axis of symmetry.
- Identify the "roots" of the function (also known as the x-intercepts of the graph). If the roots are not integers, use the calculator (2nd CALC $\rightarrow 2: z e r o$) to find them. Round all roots to the nearest tenth when necessary.

1) $y=x^{2}-2 x-3$
2) $y=x^{2}+2 x+1$
3) $y=x^{2}+4 x+1$

Without graphing the quadratic function, determine the x-intercepts (roots) of the graph.
4) $y=x^{2}-5 x+4$
5) $y=2 x^{2}-4$

Without graphing, use the quadratic formula to determine the x-intercepts (roots) of the graph.
6) $y=x^{2}-4 x+7$

