Essential Question: What do the graphs of quadratic functions look like?
Do Now: Using your graphing calculator, go to $y=$ and graph the equation $y=x^{2}+x-3$.
Draw a sketch of what your graph looks like.

Graphing Quadratic Functions

$>$ The equation must be in standard form, $y=\mathbf{a} x^{2}+\mathbf{b} \boldsymbol{x}+\mathbf{c}$
$>$ Find the x-coordinate of the vertex (turning point) using the formula, $x=\frac{-b}{2 a}$
Create a table of values using three x-values smaller than the vertex, and three x-values larger than the vertex.
$>$ Graph the points from the table of values and connect them with a smooth curve.
$>$ Label the parabola using the original equation.

1. Graph $y=x^{2}-2 x+5$

x	y

2. Graph $y=-2 x^{2}+8 x+1$

x	y

- The parabola opens up when the a value is \qquad and down when the a value is
\qquad —.
- If the parabola opens up, the vertex is called the \qquad (lowest point). If the parabola opens down, the vertex is the \qquad (highest point).
- The vertical line that divides the parabola into two equal halves, through the vertex, is called the \qquad _.

\square
Go back to the first two graphs and label the axis of symmetry and vertex, and state if the vertex is a minimum or maximum.

Algebra RH

HW \# \qquad

For the following quadratic equations:

1) Create a table of values.
2) Graph the parabola on graph paper. (Graph each parabola separately.)
3) Label the vertex and determine if it is a minimum or maximum point.
4) Graph and label the axis of symmetry for each graph.

Examples:

1. $y=x^{2}-6 x+8$
2. $y=-x^{2}+4$
3. $y=-x^{2}-4 x-4$
4. $y=-2 x^{2}+3$
5. $y=\frac{1}{2} x^{2}-4 x+6$
6. $y=3 x^{2}+6 x-10$
