Essential Question: How do we solve quadratic equations?
Do Now: Compare and contrast the equations below.
a) $x^{2}+1=10$
b) $x+1=9$

Think about this to help you...

- Are the equations equivalent?
- Would you solve the equations in the same way?
- Do the equations have the same number of solutions?

Quadratic Equation:

\qquad

Let's look at another quadratic equation. How would you solve $x^{2}-6 x+8=0$?

Examples:

1) $x^{2}-8 x=-16$
2) $x^{2}+5 x=36$
3) $x^{2}-16=0$
4) $4 x^{2}-x=0$
5) $3 x^{2}-6 x-45=0$
6) $5 x^{2}-125=0$

Solving Quadratic Equations by Factoring

1) Rewrite the equation in the form of $a x^{2}+b x+c=0$
2) Factor
3) Set each factor equal to zero and solve (zero product property)
4) Check solution set with the original equation
5) $x(x-2)=35$
6) $x^{2}+5 x-12=8 x-2$

Quadratic Equations can be solved by \qquad and using the property. If the product of two quantities equals zero, at least one of the quantities must equal zero.

One more question...

The solution set of the equation $x^{2}-4 x-12=0$ is
(1) $\{-6,2\}$
(3) $\{-2,6\}$
(2) $\{-4,3\}$
(4) $\{-3,4\}$

Solve the following quadratic equations.

1. $x^{2}-3 x+2=0$
2. $z^{2}-5 z+4=0$
3. $x^{2}-8 x+16=0$
4. $c^{2}+6 c=-5$
5. $10 m^{2}+10 m=0$
6. $m^{2}-64=0$
7. $3 x^{2}-12=0$
8. $2 x^{2}+20 x=-18$
9. $5 x^{2}-60 x=140$
