Algebra RH

Essential Question: How do we factor by grouping?
Do Now: Can you factor the following polynomial expressions?
A. $x^{2}(x+3)+2(x+3)$
B. $3 x^{4}+3 x^{3}-7 x-7$
C. $3 x^{2}+10 x+8$

Think about this...
Can we factor the expression $x^{2}(x+3)+2(x+3)$?
(a) Are there any common factors in the expression?

Hint: Sometimes the greatest common factor is not a monomial.
(b) Rewrite the above expression as the product of two binomials.

> Let's practice factoring polynomials where the GCF is not a monomial.
Rewrite each of the following expressions as the product of two binomials by factoring out a common binomial factor.

1) $2 x(x-5)+3(x-5)$
2) $x^{3}(x-9)+(x-9)$
3) $(x+5)(x+1)+(x+5)(x+8)$

In some cases the GCF for ALL the terms of a polynomial is 1 . If you have a four term polynomial and the $G C F=1$, then try factoring by grouping.

Factoring a Polynomial with Four Terms by Grouping

Step 1: Group the first two terms together and then the last two terms together.
Step 2: Factor out a GCF from each separate binomial.
Step 3: Factor out the common binomial.

Example: Factor $3 x^{4}+3 x^{3}-7 x-7$

* $3 x^{4}+3 x^{3}-7 x-7 \longleftarrow$ group the first two and last two terms
* $3 x^{3}(x+1)-7(x+1) \longleftarrow$ then factor out the GCF from each pair of terms
* $(x+1)\left(3 x^{3}-7\right) \longleftarrow$ factor out the matching factor and write what is left (include parentheses around each factor).

4) $x^{3}-2 x^{2}-3 x+6$
5) $2 x^{3}-x^{2}-6 x+3$
6) $5 x^{3}-10 x^{2}+3 x-6$

Factoring a Polynomial with Three Terms by Grouping

Factoring a trinomial of the form $a x^{2}+b x+c, a \neq 1$	Factor: $3 x^{2}+10 x+8$
1. Always begin by factoring out the GCF	The GCF of this polynomial is 1
2. Find the product of a and $c(a \cdot c)$	$\begin{aligned} & \boldsymbol{a} \cdot \boldsymbol{c} \\ & 3 \cdot 8=24 \end{aligned}$
3. Find two factors of $\boldsymbol{a} \boldsymbol{c}$ that add up to \boldsymbol{b} Find two factors of $\mathbf{+ 2 4}$ that sum to $\mathbf{+ 1 0}$	$\begin{aligned} & 6 \cdot 4=24 \\ & 6+4=10 \end{aligned}$
4. Replace the middle term with an equivalent expression that uses the integer pair found in the previous step	$3 x^{2}+6 x+4 x+8$ the order of middle terms does not matter
5. Group the four terms to form two pairs	$3 x^{2}+6 x+4 x+8$
6. Factor each pair of terms by finding the GCF	$3 x(x+2)+4(x+2)$
7. Factor out the common (shared) binomial	$(x+2)(3 x+4)$

7) $3 x^{2}+14 x-5$
8) $2 x^{2}+5 x+2$
9) $16 x^{2}+8 x+1$
10) $4 x^{2}-12 x+5$
11) $2 x^{2}+x-15$
12) $4 x^{2}-5 x-6$
13) $3 x^{2}-7 x+2$
14) $6 x^{2}-17 x+12$
