Essential Question: How do we factor a binomial that is a difference of two squares?
Do Now: Multiply each pair of binomials.
a) $(x-2)(x+2)$
b) $(x-5)(x+5)$
c) $(x+7)(x-7)$

Factoring the Difference of Two Squares ("DOTS")

1) In order to factor DOTS, you must recognize DOTS.
$x^{2}-9$ is a difference of two squares (DOTS)
Both x^{2} and 9 are perfect squares. Since both squares are being subtracted, this expression is known as a difference of two squares (DOTS).
2) Once you recognize DOTS, you can factor DOTS.

Factor $x^{2}-9$ by taking the square root of each perfect square.
Let's list the perfect squares...

What is the square root of x^{2} ? \qquad
What is the square root of 9 ? \qquad
3) Using each root, create a sum and difference.

The factors are \qquad and \qquad .

Therefore, $x^{2}-9$ written in factored form is \qquad .

Rule: $a^{2}-b^{2}=$ \qquad

Factor:

1) $x^{2}-100$
2) $x^{2}-81$
3) $x^{2}-4$
4) $x^{2}-y^{2}$
5) $16 x^{2}-25$
6) $49 x^{2}-36 y^{2}$
7) $100 x^{4}-1$
8) $144-x^{4}$
9) $81 x^{2}-y^{4}$
10) Is $x^{2}+4$ factorable? Explain.
11) Is $x^{9}-4$ factorable? Explain.

An algebraic term is a perfect square when the numerical coefficient (the number in front of the variable) is a \qquad and the exponent of the variable(s) is an \qquad number.
"To be, or not to be: that is the question" is the opening phrase in William Shakespeare's play Hamlet. It is perhaps the most famous of all literary quotations.
"Factorable or not Factorable: that is the question"
Determine if the polynomials are factorable or not. If the polynomial is factorable, $\underline{f a c t o r ~ i t . ~}$

1) $x-36$
2) $4 x^{2}-25$ \qquad
3) $x^{2}+1$
4) $x^{2}-2$
5) $64 x^{2}-y^{4}$
6) $16 x^{9}-9 y^{2}$
7) $100 x^{2}+49$
8) $x^{6}-1$

Factor each polynomial by factoring out the GCF.

1. $24 x+6$
2. $10 x^{2}-15 x$
3. $3 x^{2}-9$
4. $4 x^{3}+8 x^{2}-x$
5. $2 x^{4}+14 x^{3}-60 x^{2}$
6. $3 x^{2}+21 x+48$

Factor into the product of two binomials.
7. $a^{2}+3 a+2$
8. $x^{2}-11 x+10$
9. $y^{2}-6 y+8$
10. $y^{2}-9 y+8$
11. $y^{2}+9 y+8$
12. $y^{2}-2 y-8$
13. $y^{2}+2 y-8$
14. $a^{2}-7 a-8$
15. $y^{2}+7 y-8$
16. $x^{4}+x^{2}-30$
17. $x^{4}-16 x^{2}-36$
18. $z^{6}+17 z^{3}+42$

Factor into the product of two binomials.
19. $x^{2}-81$
20. $4 x^{2}-9$
21. $64-100 y^{2}$
22. $m^{2}-36$
23. $121 a^{2}-1$
24. $169 p^{2}-225$

