8 Algebra CC

13-2

Essential Question: How do we factor a binomial that is a difference of two squares?

Do Now: Multiply each pair of binomials.

a)
$$(x-2)(x+2)$$

b) $(x-5)(x+5)$
c) $(x+7)(x-7)$

Factoring the Difference of Two Squares ("DOTS")

1) In order to factor DOTS, you must recognize DOTS.

 $x^2 - 9$ is a difference of two squares (DOTS)

Both x^2 and 9 are perfect squares. Since both squares are being subtracted, this expression is known as a difference of two squares (DOTS).

2) Once you recognize DOTS, you can factor DOTS.

Factor $x^2 - 9$ by taking the square root of	of each perfect square.	Let's list the perfect squares
What is the square root of x²?		
What is the square root of 9 ?		
3) Using each root, create a sum and	difference.	
The factors are and		
Therefore, $x^2 - 9$ written in factored fo	orm is	·
Rule : $a^2 - b^2 =$		
Factor: 1) x ² - 100	2) x ² - 81	3) x² - 4
4) x ² - y ²	5) 16x ² - 25	6) 49x² - 36y²

15

8) 144 - x⁴

10) Is $x^2 + 4$ factorable? Explain.

11) Is x⁹ - 4 factorable? Explain.

TAKLY	
An algebraic term is a perfect square when th	ne numerical coefficient (the number in front of
the variable) is a	and the exponent of the
variable(s) is an	_ number.

"To be, or not to be: that is the question" is the opening phrase in <u>William Shakespeare</u>'s play <u>Hamlet</u>. It is perhaps the most famous of all literary quotations.

"Factorable or not Factorable: that is the question"

Determine if the polynomials are factorable or not. If the polynomial is factorable, factor it.

1) x- 36	2) 4x ² - 25
3) x ² + 1	4) x ² - 2
5) 64x ² - y ⁴	6) 16x ⁹ - 9y ²
7) 100x ² + 49	8) x ⁶ - 1

8 Algebra CC		HW#		
Factor each polynomial by factoring out the GCF.				
1. $24x + 6$	2. $10x^2 - 15x$	3. $3x^2 - 9$		
4. $4x^3 + 8x^2 - x$	5. $2x^4 + 14x^3 - 60x^2$	6. $3x^2 + 21x + 48$		
Factor into the product of two binomials.				
7. $a^2 + 3a + 2$	8. $x^2 - 11x + 10$	9. $y^2 - 6y + 8$		
10. $y^2 - 9y + 8$	11. $y^2 + 9y + 8$	12. $y^2 - 2y - 8$		

- 13. $y^2 + 2y 8$ 14. $a^2 7a 8$ 15. $y^2 + 7y 8$
- 16. $x^4 + x^2 30$ 17. $x^4 16x^2 36$ 18. $z^6 + 17z^3 + 42$

Factor into the product of two binomials.

- 19. $x^2 81$ 20. $4x^2 9$ 21. $64 100y^2$
- 22. $m^2 36$ 23. $121a^2 1$ 24. $169p^2 225$