Essential Question: How do we factor polynomials?
Do Now: Complete each statement.
a) $8 m-6=2(4 m-$ \qquad)
b) $36 a^{3}+24 a^{2}+12 a=12 a($ \qquad $+$ \qquad +1)

Factoring Polynomial Expressions

Think about this...

Factoring is the process of representing an expression as a product.
Example: $2 \times 3=6$ The numbers 2 and 3 are factors of 6

FACTORS
We can also find the factors of polynomial expressions.

Example: $2(y+3)=2 y+6$ The factors of $2 y+6$ are 2 and $y+3$

Finding factors of a polynomial expression is like "undistributing".
The factored form of $2 y+6$ is $2(y+3)$.

Factoring Polynomials by factoring out the GCF (Greatest Common Factor)

- Determine the GCF of all the terms
- Divide the polynomial by the GCF
- Write as a product: GCF(Quotient)

Example: Factor $3 y^{2}+12 y$
$1^{\text {stt }}$ Find the GCF of $3 y^{2}$ and $12 y$:
$2^{\text {nd }}$: Divide the polynomial by the GCF \qquad :
$3^{\text {rd }}$: Write as a product:
$4^{\text {th }}$: Check by distributing:

Factor each polynomial by factoring out the GCF.

1) $25 a+15$
2) $3 x+3 y$
3) $18 x^{2}-12 x$
4) $12 x^{3}+20 x^{2}$
5) $8 m^{2}+20 m-4$
6) $10 x^{3}+40 x^{2}+100 x$

Factoring Trinomials using the AM Method

Simplify each polynomial expression.
a) $(x+4)(x+2)$
b) $(x-4)(x+2)$
c) $(x+4)(x-2)$
d) $(x-2)(x-4)$

Factoring a trinomial whose leading coefficient is $1\left(a x^{2}+b x+c\right.$, where $\left.a=1\right)$
Step 1: Start with 2 sets of parentheses whose first term is \mathbf{x}.
Step 2: Identify all pairs of factors that multiply to the \mathbf{c} value (last term).
Step 3: Determine which pair adds to the \boldsymbol{b} value (middle term).
Step 4: Place the factors in the parentheses to create the binomials.
Step 5: Check by multiplying the factors (double distribute).

Factor the polynomials below.
Ask yourself, "What numbers MULTIPLY to the last term (c) and ADD to the middle term (b)?"
a) $x^{2}+6 x+8$
b) $x^{2}-2 x-8$
c) $x^{2}+2 x-8$
d) $x^{2}-6 x+8$

**Patterns to Notice:

1. If b and c are both positive, both of the binomials have \qquad signs.
2. If c is negative, one binomial has a \qquad sign and one has a \qquad sign.
3. If \boldsymbol{c} is positive $a n d$ is negative, both binomials have a \qquad sign.

Factor each trinomial.

1) $x^{2}+7 x+10$
2) $x^{2}+6 x+9$
3) $x^{2}+x-6$
4) $x^{2}-7 x+12$
5) $x^{2}-9 x+18$
6) $x^{2}+7 x+6$
7) $x^{2}-3 x-10$
8) $x^{2}+12 x+35$
9) $x^{2}-3 x-4$

Let's try some more challenging examples.
Helpful Hint: Look at the factored form of the polynomials in examples 1, 2 and 3.
10) $x^{4}+7 x^{2}+10$
11) $x^{4}+6 x^{2}+9$
12) $x^{6}+x^{3}-6$

- To \qquad means to create a product.
- Factoring reverses the \qquad property.
- The $A M$ method is used to factor trinomials in the form of $a x^{2}+b x+c$ where $a=$ \qquad .

