Algebra RH

Essential Question: How can we represent exponential relationships symbolically?

Do Now: Read the scenario below and answer the questions that follow.

When a piece of paper is folded in half, the total thickness doubles. Suppose an unfolded piece of paper is 0.1 millimeter thick. The equation $t(n) = 0.1(2)^n$ represents the total thickness, t(n), as a function of the number of folds, n.

- a) The function $t(n) = 0.1(2)^n$ is an explicit rule created from $t(n) = ab^n$. In the explicit rule, what is the value of a? What does this number represent in the context of the problem?
- b) What is the value of **b**? What does this number represent in the context of the problem?
- c) Using the function, determine the thickness of the paper after 5 folds.

How do we write a function rule to represent an exponential relationship?

- 1. Identify the values of **a** and **b** in **f(x) = ab**^x.
 - a represents the initial value (0, a)
 - **b** represents the common ratio
- 2. Write the function by substituting the values of **a** and **b** into $f(x) = ab^x$.
- The height *h(n)* of a dropped ball is an exponential function of the number of bounces *n*. The ball was dropped from an initial height of 40 inches. On its first bounce, it reached a height of 30 inches and on its second bounce, it reached a height of 22.5 inches. Write an exponential function in the form of *h(n)* = abⁿ that represents this scenario.

- A pharmaceutical company is testing a new antibiotic. The number of bacteria present in a sample 1 hour after application of the antibiotic is 50,000. After another hour, the number of bacteria present in the sample is 25,000. The number of bacteria remaining, *r(n)*, is an exponential function of the number of hours, *n*, since the antibiotic was applied.
 - a) Complete the table below that describes the relationship.

Number of Hours n	0 Initial Amount	1	2	3	4
Amount of Bacteria r(n)					

- b) Write an exponential function to represent the above scenario.
- c) Using your function, determine the amount of bacteria that will remain in the sample after the 7th hour.

Suppose you invest some money in an interest bearing account. After the first month, the balance, including interest, is \$10,500. Following the second month, the balance is \$11,025. Following the 3rd month, the balance is \$11,576.25. Write an exponential function in f(x) = ab^x form to represent the balance in the account after x months. Use the table below to help you.

Months				
х	0	1	2	3
Balance in				
Account				
f(x)				

In order to represent an exponential relationship as a function in the form of $f(x) = ab^x$,

. .

identify a, _____(y-intercept),

and **b,**_____