Essential Question: How can we represent exponential relationships symbolically?
Do Now: Read the scenario below and answer the questions that follow.
When a piece of paper is folded in half, the total thickness doubles. Suppose an unfolded piece of paper is 0.1 millimeter thick. The equation $\boldsymbol{t}(\boldsymbol{n})=\mathbf{0 . 1 (2) ^ { n }}$ represents the total thickness, $\boldsymbol{t}(\boldsymbol{n})$, as a function of the number of folds, \boldsymbol{n}.
a) The function $\boldsymbol{t}(\boldsymbol{n})=\mathbf{0 . 1 (2)}{ }^{\boldsymbol{n}}$ is an explicit rule created from $\boldsymbol{t}(\boldsymbol{n})=\mathbf{a b}^{\boldsymbol{n}}$. In the explicit rule, what is the value of a ? What does this number represent in the context of the problem?
b) What is the value of \mathbf{b} ? What does this number represent in the context of the problem?
c) Using the function, determine the thickness of the paper after 5 folds.

How do we write a function rule to represent an exponential relationship?

1. Identify the values of \mathbf{a} and \mathbf{b} in $\mathbf{f}(\mathbf{x})=\mathbf{a b}^{\mathbf{x}}$.

- a represents the initial value $(0, a)$
- b represents the common ratio

2. Write the function by substituting the values of \mathbf{a} and \mathbf{b} into $f(x)=\mathbf{a b}^{\mathbf{x}}$.
3. The height $\boldsymbol{h}(\boldsymbol{n})$ of a dropped ball is an exponential function of the number of bounces \boldsymbol{n}. The ball was dropped from an initial height of 40 inches. On its first bounce, it reached a height of 30 inches and on its second bounce, it reached a height of 22.5 inches. Write an exponential function in the form of $\boldsymbol{h}(\boldsymbol{n})=\mathbf{a b}^{\boldsymbol{n}}$ that represents this scenario.
4. A pharmaceutical company is testing a new antibiotic. The number of bacteria present in a sample 1 hour after application of the antibiotic is 50,000. After another hour, the number of bacteria present in the sample is 25,000 . The number of bacteria remaining, $r(n)$, is an exponential function of the number of hours, \boldsymbol{n}, since the antibiotic was applied.
a) Complete the table below that describes the relationship.

Number of Hours \boldsymbol{n}	0 Initial Amount	1	2	3	4
Amount of Bacteria $\boldsymbol{r}(\boldsymbol{n})$					

b) Write an exponential function to represent the above scenario.
c) Using your function, determine the amount of bacteria that will remain in the sample after the $7^{\text {th }}$ hour.
3. Suppose you invest some money in an interest bearing account. After the first month, the balance, including interest, is $\$ 10,500$. Following the second month, the balance is $\$ 11,025$. Following the 3rd month, the balance is $\$ 11,576.25$. Write an exponential function in $f(\mathbf{x})=\mathbf{a b}^{\mathbf{x}}$ form to represent the balance in the account after \mathbf{x} months. Use the table below to help you.

Months \mathbf{x}	0	1	2	3
Balance in Account $\mathbf{f}(\mathbf{x})$				

In order to represent an exponential relationship as a function in the form of $f(x)=\mathbf{a b}^{\mathbf{x}}$, identify a, \qquad (y-intercept), and \mathbf{b}, \qquad .

