Essential Question: How can we determine the rate of change of an exponential function?
Do Now: Consider the exponential function: $f(x)=\mathbf{8 (2)}{ }^{x}$
a) Evaluate $f(3)$.

Finding x algebraically.
b) Find the value of x if $f(x)=1024$.

Let's take a closer look at exponential functions.

Make a table of values and graph the following exponential function over the given interval.

1. $G r a p h ~ f(x)=(2.5)^{x}$ over the interval $0 \leq x \leq 3$

\mathbf{x}	$\mathbf{f (x)}$

What is the average rate of change of this function over the given interval?
Interval begins at: (
)
Average Rate of Change: $\frac{\Delta y}{\Delta x}$
Interval ends at: ()

All linear functions have a constant rate of change.
In an exponential function, an average rate of change can be calculated over a specified interval.
2. Consider the exponential function $f(x)=10(2)^{x}$.
a) Find the value of $f(0)$. What is the significance of this value?
b) Is this an increasing or decreasing exponential function? How do you know?
c) Using your calculator, sketch a graph of this function on the axes shown below. Use the window indicated. Mark the y-intercept.

d) What is the function's average rate of change over the interval $-1 \leq x \leq 2$?
e) Is this rate of change greater than or less than that of the linear function $g(x)=10 x+7$? Explain.

Exponential functions are curved lines that either increase or decrease rapidly. We can determine an average \qquad of a specific part of an exponential function by using the two points that mark the beginning and end of the \ldots. Use these two points and $\frac{\Delta y}{\Delta x}$ to calculate the average rate of change.
\qquad

1. Classify each of the following exponential functions as either increasing or decreasing and give the value of their y-intercepts.
a) $f(x)=125(1.25)^{x}$
b) $f(x)=22(0.75)^{x}$
c) $f(x)=256\left(\frac{5}{2}\right)^{x}$
2. Which of the following could be the equation of the exponential function graphed below? Explain how you made your choice.
(1) $y=15(1.25)^{x}$
(2) $y=50(1.04)^{x}$
(3) $y=18(0.75)^{x}$
(4) $y=40(0.45)^{x}$

3. Using your graphing calculator, create a table of values and draw a sketch of the exponential function $y=3(2.5)^{x}$ over the interval $-4 \leq x \leq 4$. Use the window indicated.

\mathbf{x}	\mathbf{y}

What is the average rate of change of the function over the given interval?
4. Which of the following is a decreasing exponential function whose y-intercept is 20 ?
(1) $y=20\left(\frac{4}{3}\right)^{x}$
(2) $y=-2 x+20$
(3) $y=20\left(\frac{1}{3}\right)^{x}$
(4) $y=\left(\frac{1}{3}\right)^{x}+20$
5. Which of the following equations would best describe the data in the table?
(1) $y=10 x+2$
(2) $y=8 x+2$
(3) $y=5(2)^{x}$
(4) $y=2(5)^{x}$

x	0	1	2	3	4
y	2	10	50	250	1250

