Essential Question: How can we determine the rate of change of an exponential function?

Do Now: Consider the exponential function: $f(x) = 8(2)^x$

a) Evaluate f(3).

Finding x algebraically.

b) Find the value of x if f(x) = 1024.

Let's take a closer look at exponential functions.

Make a table of values and graph the following exponential function over the given interval.

1. Graph $f(x) = (2.5)^x$ over the interval $0 \le x \le 3$

х	f(x)

What is the average rate of change of this function over the given interval?

)

)

Interval begins at: (

Average Rate of Change: $\frac{\Delta y}{\Delta x}$

Interval ends at: (

All **linear** functions have a <u>constant rate of change</u>. In an **exponential** function, an <u>average rate of change</u> can be calculated over a specified interval.

- 2. Consider the exponential function $f(x) = 10(2)^x$.
 - a) Find the value of f(0). What is the significance of this value?
 - b) Is this an increasing or decreasing exponential function? How do you know?
 - c) Using your calculator, sketch a graph of this function on the axes shown below. Use the window indicated. Mark the y-intercept. *y*

d) What is the function's average rate of change over the interval $-1 \le x \le 2$?

e) Is this rate of change greater than or less than that of the linear function g(x) = 10x + 7? Explain.

Exponential functions are curved lines that either increase or decrease rapidly. We can
determine an <i>average</i> of a specific part of
an exponential function by using the two points that mark the beginning and end of the Use these two points and $\frac{\Delta y}{\Delta x}$ to calculate the average rate of change.

8 Algebra CC

HW # _____

1. Classify each of the following exponential functions as either increasing or decreasing and give the value of their y-intercepts.

a)
$$f(x) = 125(1.25)^x$$
 b) $f(x) = 22(0.75)^x$ c) $f(x) = 256\left(\frac{5}{2}\right)^x$

2. Which of the following could be the equation of the exponential function graphed below? Explain how you made your choice.

3. Using your graphing calculator, create a table of values and draw a sketch of the exponential function $y = 3(2.5)^x$ over the interval $-4 \le x \le 4$. Use the window indicated.

What is the average rate of change of the function over the given interval?

4. Which of the following is a decreasing exponential function whose y-intercept is 20?

(1)
$$y = 20\left(\frac{4}{3}\right)^x$$
 (2) $y = -2x + 20$ (3) $y = 20\left(\frac{1}{3}\right)^x$ (4) $y = \left(\frac{1}{3}\right)^x + 20$

- 5. Which of the following equations would best describe the data in the table?
 - (1) y = 10x + 2(2) y = 8x + 2x01234(3) $y = 5(2)^{\times}$ (4) $y = 2(5)^{\times}$ (4) $y = 2(5)^{\times}$ (5) 250(7) 250(7) 250