Algebra RH

Essential Question: How can we determine the average rate of change of an exponential function over a specific interval?

Do Now: Consider the exponential function, $f(x) = 8(2)^{x}$.

a) Evaluate f(3).

b) What ordered pair would lie on the graph of f(x) based on f(3)?

Make a table of values and graph the following exponential functions over the given interval.

1. Graph $f(x) = (2.5)^x$ over the interval $0 \le x \le 3$

x	f(x)						

What is the average rate of change of the function over the interval?

Interval begins at: _____

Average Rate of Change:

Interval ends at:

- 2. Consider the exponential function $f(x) = 10(2)^{x}$.
 - a) Find the value of f(0). What point does this represent on the graph?
 - b) Is this an increasing or decreasing exponential function? How do you know?
 - c) Using your calculator, sketch a graph of this function on the axes shown below. Use the window indicated. Mark the y-intercept. *y*

- d) What is the function's average rate of change over the interval $-1 \le x \le 2$?
- e) Is this rate of change greater than or less than that of the linear function g(x) = 10x + 7? Explain.

TAK							
AWA	Exponential functions are curves that either increase or decrease rapidly. We can						
	determine an average	of a specific part of an exponential					
	function by using two points that mark the begin	ning and end of the by					
	calculating $\frac{\Delta y}{\Delta x}$.						

Algebra CC

HW # _____

1. Classify each of the following exponential functions as either increasing or decreasing and give the value of their y-intercepts.

a)
$$f(x) = 125(1.25)^x$$
 b) $f(x) = 22(0.75)^x$ c) $f(x) = 256\left(\frac{5}{2}\right)^x$

- 2. Which of the following could be the equation to the exponential function graphed below? Explain how you made your choice.
 - (1) $y = 15(1.25)^x$ (2) $y = 50(1.04)^x$
 - (3) $y = 18(0.75)^{x}$ (4) $y = 40(0.45)^{x}$

3. Using your graphing calculator, create a table of values and draw a sketch of the exponential function $y = 3(2.5)^x$ over the interval $-4 \le x \le 4$. Use the window indicated.

What is the average rate of change of the function over the given interval?

4. Which of the following is a decreasing exponential function whose y-intercept is 20?

(1)
$$y = 20\left(\frac{4}{3}\right)^x$$
 (2) $y = -2x + 20$ (3) $y = 20\left(\frac{1}{3}\right)^x$ (4) $y = \left(\frac{1}{3}\right)^x + 20$

5. Which of the following functions would best describe the data in the table?

(1) $y = 10x + 2$	(2) $y = 8x + 2$	X	0	1	2	3	4
(3) $y = 5(2)^{x}$	(4) $y = 2(5)^{x}$	У	2	10	50	250	1250