Essential Question: How can we write arithmetic and geometric sequences recursively?

Do Now:

Determine if the sequence below is arithmetic or geometric. For each sequence write an explicit rule that can be used to find the nth term of the sequence.
a) $4,7,10,13, \ldots$
b) $1,3,9,27, \ldots$

Arithmetic and Geometric Sequences can be defined Recursively and Explicitly

Let's take a closer look at the sequences from the Do Now.
Can the sequence $4,7,10,13, \ldots$ be defined with a recursive rule?

$$
a_{n}=
$$

Can the sequence $1,3,9,27, \ldots$ be defined with a recursive rule?

$$
a_{n}=
$$

Writing Rules to Generate Arithmetic and Geometric Sequences

Arithmetic	Geometric
Explicit Rule: $a_{n}=a_{1}+d(n-1)$ a_{1} represents the first term in the sequence d represents the common difference This formula is used to find the nth term of the sequence.	Explicit Rule: $a_{n}=a_{1} \bullet r^{n-1}$ a_{1} represents the first term in the sequence r represents the common ratio This formula is used to find the nth term of the sequence.
Recursive Rule: $a_{n}=a_{n-1}+d ; a_{1}=$ a_{n-1} represents the previous term in the sequence d represents the common difference This formula uses the previous term to find the next term in the sequence.	Recursive Rule: $a_{n}=a_{n-1} \bullet r ; a_{1}=$ a_{n-1} represents the previous term in the sequence r represents the common ratio This formula uses the previous term to find the next term in the sequence.

Write a recursive formula for the following sequences.

1) $100,96,92, \ldots$
2) $200,40,8, \ldots$

Find the first 3 terms in each sequence below.
3) $a_{n}=a_{n-1}-0.25$ and $a_{1}=3.5$
4) $a_{n}=a_{n-1} \bullet 4$ and $a_{1}=\frac{1}{8}$
5) The figure below represents the first three terms of a sequence.

Term 1

Term 2

Term 3

Which of the following rules can be used to define the sequence? Select all that apply. Justify your response.
A. $a_{n}=a_{n-1}+4 ; a_{1}=12$
B. $a_{n}=4 n+8$
C. $a_{n+1}=a_{n}+4 ; a_{1}=12$
D. $a_{n}=12+4(n-1)$
E. $a_{n}=a_{n-1}+12 ; a_{1}=4$
F. $a_{n}=4+12(n-1)$

the AK:AWAY

Sequences defined recursively use the \qquad term(s) to find the next term of the sequence.

Sequences defined explicitly use the explicit formula to find the nth term.

