Essential Question: How can we distinguish between arithmetic and geometric sequences?

Do Now:
i) Identify each sequence as arithmetic, geometric or neither.
ii) If arithmetic, identify the common difference. If geometric, identify the common ratio.
A. $12,18,27,40.5, \ldots$
B. $-123,-137,-151,-165, \ldots$ \qquad
\qquad
C. $3,7,15,31, \ldots$ \qquad
\qquad
D. $1, \frac{1}{4}, \frac{1}{16}, \frac{1}{64}, \ldots$

STOP HERE

1. For letters A. and B. above, write an equation that can be used to find the nth term of the sequence.
$12,18,27,40.5, \ldots$
$-123,-137,-151,-165, \ldots$
A. \qquad B. \qquad
2. Using your equation, find the $10^{\text {th }}$ term in each sequence.
3. Katie works at the local pet shop. For a single litter of kittens, she puts out 17 ounces of wet food. For 2 litters she puts out 34 ounces of wet food and for 3 litters, she puts out 51 ounces of wet food. She continues this pattern for \boldsymbol{n} litters.
a) Write an equation that can be used to find the number of ounces of wet food, a_{n}, Katie will put out for \boldsymbol{n} litters of kittens.
b) How much wet food will Katie put out if there are 8 litters of kittens in the store?
4. A soup kitchen makes 16 gallons of soup every two weeks. Each day they serve 25% of the soup that remains from the previous day. The table below shows how much soup, $f(n)$, remains after \boldsymbol{n} days.

\mathbf{n}	1	2	3
$\mathbf{f}(\mathbf{n})$	12	9	6.75

a) Write an equation that can be used to find the number of gallons of soup remaining after \boldsymbol{n} days.
b) How many gallons of soup remain after the $12^{\text {th }}$ day? Round your answer to the nearest tenth.
c) On what day is there about 2 gallons of soup left?
5. Write an explicit rule for an arithmetic sequence if $a_{6}=8$ and $a_{10}=40$.
6. Write an explicit rule for a geometric sequence if $a_{3}=10$ and $r=\frac{1}{2}$.

If a sequence of numbers is arithmetic, the pattern will display a common \qquad between consecutive terms. An explicit formula $\mathbf{a}_{\mathbf{n}}=$ \qquad can be used to find the \boldsymbol{n} th term of the sequence.

If a sequence of numbers is geometric, the pattern will display a common \qquad between consecutive terms. An explicit formula $\mathbf{a}_{\mathbf{n}}=$ \qquad can be used to find the nth term of the sequence.

