Algebra RH

Essential Questions: What is a recursive sequence? How do we write their formulas? How do we use recursive formulas to find the terms in a sequence?

Do Now:

Each square in this pattern has side length 1 unit. Imagine that the pattern continues.

Record the information for the given figures in the table below and then continue the pattern.

Figure	1	2	3	4	5	6
Perimeter						

What is a recursive sequence?

A **recursive sequence** is the process in which each step of a pattern is <u>dependent</u> on the step or steps before it.

A famous recursive sequence is the Fibonacci sequence shown below. What is the pattern?

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Writing a **recursive formula** will help you find the **next term** in a sequence. Each term is found by doing something $(+, -, \times, \div)$ to the **previous term(s)**.

A recursive formula is written with two parts:

- a statement of the starting term, and
- a statement of the formula used to arrive at the next term

Given Term	Next Term		Previous Term	Given Term
a_1		From the first rung, a_1 ,		a_1
a_4		17 V / W		a_4
a_{n+1}		you move to the second rung, a_2		a_{n+1}
a_n				a_n
<i>a</i> (6)		From the second rung a		<i>a</i> (6)
<i>a</i> (<i>n</i>)		you move to the third rung, a		a(n)
<i>a</i> (<i>n</i> +1)				a(n+1)

Sequences with a combination of operations

Find the first 4 terms in each of the following sequences.

(5)
$$a_n = a_{n-1} - 4$$
 where $a_1 = 15$ (6) $a(n+1) = 5a(n)$ and $a(1) = 3$

(7)
$$a(n) = \frac{1}{4}a(n-1)$$
 where $a(1) = 8$ (8) $a_{n+1} = 3a_n + 4$ where $a_1 = 5$

(9) The diagrams below represents the first three terms of a sequence.

Assuming the pattern continues, which formula determines the a_n , the number of shaded squares in the n^{th} term?

(a)
$$a_n = a_{n+1} + 4$$

(b) $a_n = a_{n+1} - 4$
(c) $a_n = a_{n-1} + 4$
(d) $a_n = a_{n-1} - 4$

Term 1

Term 2

Term 3