Essential Questions: What is a recursive sequence? How do we write their formulas? How do we use recursive formulas to find the terms in a sequence?

Do Now:

Each square in this pattern has side length 1 unit. Imagine that the pattern continues.

Figure 1

Figure 2

Figure 3

Figure 4

Record the information for the given figures in the table below and then continue the pattern.

Figure	1	2	3	4	5	6
Perimeter						

A sequence is a set of numbers called terms, in a specific order.

What is a recursive sequence?

A recursive sequence is the process in which each step of a pattern is dependent on the step or steps before it.

A famous recursive sequence is the Fibonacci sequence shown below. What is the pattern?

$$
1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

Writing a recursive formula will help you find the next term in a sequence. Each term is found by doing something ($+,-, x, \div$) to the previous term(s).

A recursive formula is written with two parts:

- a statement of the starting term, and
- a statement of the formula used to arrive at the next term

Given Term	Next Term
a_{1}	
a_{4}	
a_{n+1}	
a_{n}	
$a(6)$	
$a(n)$	
$a(n+1)$	

From the first rung, a_{1}, you move to the second rung, a_{2}

From the second rung, a_{2}, you move to the third rung, a_{3}

Previous Term	Given Term
	a_{1}
	a_{4}
	a_{n+1}
	a_{n}
	$a(6)$
	$a(n)$
	$a(n+1)$

(1) Consider the perimeter example from the Do Now:
(a) Find the pattern.
(b) Write a recursive formula for the sequence.

(c) Use the formula to find the 7 th term in the sequence.
(2) Consider the sequence: $1,3,9,27 \ldots$
(a) Find the pattern.
(b) Write a recursive formula for the sequence.

Write a recursive formula for the following sequences.
(3) $100,96,92, \ldots$
(4) $200,40,8, \ldots$

sequences with a combination of operations

Find the first 4 terms in each of the following sequences.
(5) $\quad a_{n}=a_{n-1}-4$ where $a_{1}=15$
(6) $a(n+1)=5 a(n)$ and $a(1)=3$
(7) $a(n)=\frac{1}{4} a(n-1)$ where $a(1)=8$
(8) $a_{n+1}=3 a_{n}+4$ where $a_{1}=5$
(9) The diagrams below represents the first three terms of a sequence.

Assuming the pattern continues, which formula determines the a_{n}, the number of shaded squares in the $n^{\text {th }}$ term?
(a) $a_{n}=a_{n+1}+4$
(c) $a_{n}=a_{n-1}+4$
(b) $a_{n}=a_{n+1}-4$
(d) $a_{n}=a_{n-1}-4$

Term 1

Term 2

Term 3

