Essential Questions: What is a geometric sequence? How do we define geometric sequences explicitly?

Do Now: In the movie "Pay it Forward" the main character, a young boy, determines that he can make a significant difference in the world by creating a chain of events. During the movie he helps three people, who each help three people and so on.

(a) How many people's lives would be affected in the $6^{\text {th }}$ round of this pattern?

1, 3, 9, \qquad , \qquad 1
(b) Identify the pattern in this sequence of numbers.
(https://www.youtube.com/watch?v=KxB43PxasGA)

What is a Geometric Sequence?

If a sequence of values follows a pattern of multiplying a fixed amount (not zero) to arrive at the next term, it is referred to as a geometric sequence. In a geometric sequence, the ratio of successive terms is called the common ratio (r).

To find the common ratio: Divide any term by the previous term.
$>$ The common ratio in this example is \qquad _.

To find the next term: Multiply the previous term by the common ratio.
$>$ The next term in this example is \qquad .

Let's take a look at some sequences... is there a common ratio? If so, find the next term in the sequence.
(1) $1,-2,4,-8, \ldots$
(2) $3,6,10,15, \ldots$
(3) $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$

Writing Geometric Sequences as Functions

You can use the first term and the common ratio to write a function rule that describes a geometric sequence. Assume the first term is 4 and the common ratio is 3.
$a_{1}=$ \qquad $r=$ \qquad

Term \# n	Term a_{n}	Written in terms of a_{1} and r	Term
1	a_{1}	a_{1}	4
2	a_{2}	$a_{1} \cdot r$	$4 \cdot 3=12$
3	a_{3}	$a_{1} \cdot r \cdot r->a_{1} \cdot r^{2}$	$4(3)^{2}=36$
4	a_{4}	$a_{1} \cdot r \cdot r \cdot r \rightarrow a_{1} \cdot r^{3}$	$4(3)^{3}=108$
n	a_{n}		

The Explicit Formula to find the nth term of a geometric sequence:
Subscript Notation $\quad a_{n}=$

Function Notation $a(n)=$
(4) Given the following geometric sequence: $1,4,16,64, \ldots$
a) Define the sequence explicitly.
b) Find the 11th term. $n=$ \qquad
$a_{1}=$ \qquad $r=$ \qquad
(5) Given the following geometric sequence: $128,32,8,2,0.5, \ldots$
a) Write an equation to find the nth term.
b) Find the 8th term. $n=$ \qquad
$a_{1}=$ \qquad $r=$ \qquad
(6) Given the following geometric sequence:

n	1	2	3	4
a_{n}	$\frac{2}{3}$	-2	6	-18

a) Write an equation to find the nth term.
b) Find the 7th term.

The
 TAKE AWAY

$>$ The ratio of successive terms in a geometric sequence is called the
\qquad _.
> The explicit formula for a geometric sequence allows you to find the nth term of the sequence by substituting the values of \qquad (first term) and \qquad (common ratio) in the equation $a_{n}=$ \qquad .

1. Find the common ratio of each of the following geometric sequences.
a) $2,6,18,54, \ldots$
b) $135,45,15,5, \ldots$
c) $7,-14,28,-56, \ldots$
2. (a) Write an equation for the nth term of the geometric sequence.
(b) Using the equation, find a_{6}.
a) $3,6,12,24, \ldots$
b) $0.375,3,24,192, \ldots$
c)

\boldsymbol{n}	1	2	3	4
$\boldsymbol{a}_{\boldsymbol{n}}$	-1024	128	-16	2

