Unit 1 - The Real Number System
Let's work together.


1. Given the numerical expressions: $-\frac{\sqrt{36}}{11} \quad 42.1 \overline{6} \quad(\sqrt{2})(\sqrt{32})$ Identify the expression(s) that represent a rational number. Justify your response.
2. Determine if each radical expression is rational or irrational. If rational, find the integer value that is equivalent to the radical expression.
a) $\sqrt{50}$
b) $\sqrt[3]{512}$
c) $\sqrt[3]{-8}$
d) $\sqrt{196}$
e) $\sqrt[3]{15}$
3. Rewrite the following irrational expressions in simplest radical form.
a) $\sqrt{75}$
b) $\sqrt{48}$
c) $\sqrt{72}$
4. Provide two examples to show that the sum of two irrational numbers could be irrational or rational.

Rational Sum $=$ $\qquad$

Irrational Sum $=$ $\qquad$
5. Provide two examples to show that the product of two irrational numbers could be irrational or rational.

Rational Product = $\qquad$

Irrational Product $=$ $\qquad$
6. Let a represent a non-zero rational number and let $b$ represent an irrational number. Which expression could represent a rational number? Explain your reasoning.
(1) $-b$
(2) $a+b$
(3) $a b$
(4) $b^{2}$

## Explanation:

7. Fill in the real number property below that justifies each step in combining the binomials.

$$
\text { Given: } \begin{aligned}
& (4 x+5)+(3 x+6) \\
& 4 x+(5+3 x)+6 \\
& 4 x+(3 x+5)+6 \\
& (4 x+3 x)+(5+6) \\
& x(4+3)+(5+6) \\
& 7 x+11
\end{aligned}
$$

8. The following is a proof of the algebraic equivalency of $(a b)^{2}$ and $a^{2} b^{2}$. Fill in each of the blanks with either the statement "commutative property" or "associative property".

$$
\begin{aligned}
(a b)^{2} & =(a b)(a b) \\
& =a(b a) b \\
& =a(a b) b \\
& =(a a)(b b) \\
& =a^{2} b^{2}
\end{aligned}
$$

