Unit 1 - The Real Number System

Let's work together.		
1. Given the numerical expressions: $-\frac{\sqrt{36}}{11}$	42.16	$\left(\sqrt{2}\right)\left(\sqrt{32}\right)$

Identify the expression(s) that represent a rational number. Justify your response.

- 2. Determine if each radical expression is rational or irrational. If rational, find the integer value that is equivalent to the radical expression.
 - a) $\sqrt{50}$ b) $\sqrt[3]{512}$ c) $\sqrt[3]{-8}$ d) $\sqrt{196}$ e) $\sqrt[3]{15}$
- 3. Rewrite the following irrational expressions in simplest radical form.
 - a) $\sqrt{75}$ b) $\sqrt{48}$ c) $\sqrt{72}$

4. Provide two examples to show that the sum of two irrational numbers could be irrational or rational.

Rational Sum =	

Irrational Sum = _____

5. Provide two examples to show that the product of two irrational numbers could be irrational or rational.

Rational Product = _____

Irrational Product = _____

6. Let *a* represent a non-zero rational number and let *b* represent an irrational number. Which expression could represent a rational number? Explain your reasoning.

(1) -b (2) a+b (3) ab (4) b^2

Explanation:

7. Fill in the real number property below that justifies each step in combining the binomials.

Given:
$$(4x + 5) + (3x + 6)$$

 $4x + (5 + 3x) + 6$
 $4x + (3x + 5) + 6$
 $(4x + 3x) + (5 + 6)$
 $x(4 + 3) + (5 + 6)$
 $7x + 11$

8. The following is a proof of the algebraic equivalency of (ab)² and a²b². Fill in each of the blanks with either the statement "commutative property" or "associative property".

