Algebra RH
 Essential Question: How do we solve for an unknown exponent?

DO NOW:
a) Solve for x : $9 x^{-\frac{2}{3}}+7=71$
b) When simplified, the expression $\left(\sqrt[3]{m^{4}}\right)\left(m^{-\frac{1}{2}}\right)$ is equivalent to
(1) $\sqrt[3]{m^{-2}}$
(3) $\sqrt[5]{m^{-4}}$
(2) $\sqrt[4]{m^{3}}$
(4) $\sqrt[6]{m^{5}}$

RECAP: When solving for an unknown base...

1) Isolate the exponential component.
2) Raise both sides to the reciprocal of the exponent.
3) Use power over root to simplify.

Example: \quad Solve for $x: \quad 9^{x}=27$

- What makes this equation different from question a) in the Do Now?
- When solving for an unknown exponent, we must find a common base. What is a common base for 9 and 27?
- Let's solve!

To solve for an unknown exponent:
1)
2)
3) \qquad

Solve each equation for the unknown variable.

1) $2^{\frac{x}{3}}=32$
2) $\quad 8^{2 x+1}=4^{4 x}$
3) $4^{-1}=2^{x+4}$
4) $\left(\frac{1}{3}\right)^{x}=9^{x+7}$
5) $\left(\frac{1}{25}\right)^{2 x}=125^{x-1}$
6) $x^{-3}=\frac{27}{64}$

\#6 IS NOT THE
SAME AS THE
OTHER
PROBLEMS!
DO NOT
CONFUSE THE
TWO TYPES OF
EQUATIONS!!!

SUMMARY:

- When the variable is the \qquad , remember reciprocal exponents, and power over root.
- When the variable is in the \qquad , remember common base, and power to a power.

Solve each equation for the unknown variable.

1) $\quad 8^{2 x}=4^{6}$
2) $\quad 9^{2 b-3}=27^{1-b}$
3) $\quad 27^{x}=9^{x+2}$
4) $\quad 9^{3 x}=3^{3 x+1}$
5) $\quad 4^{2 x-3}=\left(\frac{1}{2}\right)^{3 x}$
6) $\quad 25^{3 x-4}=\left(\frac{1}{125}\right)^{2 x}$
7) $\left(\frac{1}{9}\right)^{3 x}=\left(\frac{1}{27}\right)^{x-1}$
8) $\quad\left(a^{x}\right)^{\frac{2}{3}}=\frac{1}{a^{2}}$
9) If $2^{4 x+1}=8^{x+a}$, which expression is equivalent to x ?
(1) $a-1$
(3) $3 a-1$
(2) $\frac{a-1}{15}$
(4) $\frac{a-1}{3}$
10) If x is a positive integer, $4 x^{\frac{1}{2}}$ is equivalent to
(1) $2 x$
(3) $4 \sqrt{x}$
(2) $\frac{2}{x}$
(4) $4 \frac{1}{x}$
