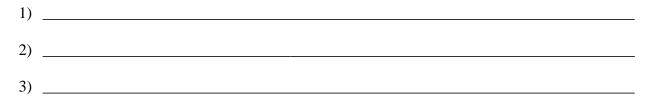
Algebra RH Essential Question: How do we solve for an unknown exponent?

<u>DO NOW:</u> a) Solve for *x*: $9x^{-\frac{2}{3}} + 7 = 71$

b) When simplified, the expression $(\sqrt[3]{m^4})(m^{-\frac{1}{2}})$ is equivalent to

(1) $\sqrt[3]{m^{-2}}$ (2) $\sqrt[4]{m^3}$ (3) $\sqrt[5]{m^{-4}}$ (4) $\sqrt[6]{m^5}$


<u>RECAP</u>: When solving for an unknown **base**...

- 1) Isolate the **exponential** component.
- 2) Raise both sides to the **reciprocal** of the exponent.
- 3) Use power over root to simplify.

Example: Solve for *x*: $9^x = 27$

- What makes this equation different from question a) in the Do Now?
- When solving for an unknown **exponent**, we must find a **common base**. What is a common base for 9 and 27?
- Let's solve!

To solve for an **unknown exponent:**

Solve each equation for the unknown variable.

1)
$$2^{\frac{1}{3}} = 32$$
 2) $8^{2x+1} = 4^{4x}$

3)
$$4^{-1} = 2^{x+4}$$
 4) $\left(\frac{1}{3}\right)^x = 9^{x+7}$

5)
$$\left(\frac{1}{25}\right)^{2x} = 125^{x-1}$$

6) $x^{-3} = \frac{27}{64}$
#6 IS NOT THE SAME AS THE OTHER PROBLEMS!
DO NOT CONFUSE THE TWO TYPES OF EQUATIONS!!!

SUMMARY:

- When the variable is the ______, remember reciprocal exponents, and power over root.
- When the variable is in the ______, remember **common base**, and **power to a power**.

Solve each equation for the unknown variable.

1)
$$8^{2x} = 4^6$$
 2) $9^{2b-3} = 27^{1-b}$

3)
$$27^x = 9^{x+2}$$
 4) $9^{3x} = 3^{3x+1}$

5)
$$4^{2x-3} = \left(\frac{1}{2}\right)^{3x}$$
 6) $25^{3x-4} = \left(\frac{1}{125}\right)^{2x}$

7)
$$\left(\frac{1}{9}\right)^{3x} = \left(\frac{1}{27}\right)^{x-1}$$
 8) $\left(a^x\right)^{\frac{2}{3}} = \frac{1}{a^2}$

9) If $2^{4x+1} = 8^{x+a}$, which expression is equivalent to *x*?

(1)
$$a-1$$
 (3) $3a-1$

(2)
$$\frac{a-1}{15}$$
 (4) $\frac{a-1}{3}$

10) If x is a positive integer, $4x^{\frac{1}{2}}$ is equivalent to

(1)
$$2x$$
 (3) $4\sqrt{x}$
(2) $\frac{2}{x}$ (4) $4\frac{1}{x}$