Essential Question: How do we determine if algebraic expressions are equivalent?
Do Now: Evaluate the algebraic expressions.
a) $(5 \mathrm{p}+2)-\mathrm{p}^{2}$ when $\mathrm{p}=-3$
b) $-9 b c^{2}$ when $\mathrm{b}=10$ and $\mathrm{c}=-2$

Think about this...
Are $2 x+y$ and $y+2 x$ equivalent? In what ways can we prove it?

$1^{\text {st }}$ proof:	$2^{\text {nd }}$ proof:

Equivalent expressions...

- represent the same value for any value(s) substituted for the variables that they contain.
- look exactly the same when simplified.

How do we simplify algebraic expressions?

1) Like terms of an expression are terms that contain the same variable(s) raised to the same power.

Ex: $2 x$ and $3 x$ are like terms Ex: $2 x$ and $3 y$ are not like terms
2) Only like terms can be combined.

Ex: $2 x+3 y-5 x+y$

$$
2 x-5 x+3 y+y
$$

$$
-3 x+4 y \quad 2 x+3 y-5 x+y \text { is equivalent to }-3 x+4 y
$$

3) When simplifying expressions with parentheses (), first use the distributive property and then combine like terms.

Ex: $2(4 x-5 y)+7 x$
$8 x-10 y+7 x$
$8 x+7 x-10 y$
$15 x-10 y \quad 2(4 x-5 y)+7 x$ is equivalent to $15 x-10 y$

Justifying Equivalence Using the Properties of Real Numbers

Is $6+3(5 y)$ equivalent to $3(4 y+2)+3 y$? Simplify the expressions to find out.

Expression	Property/Process
$3(4 y+2)+3 y$	GIVEN EXPRESSION

Expression	Property/Process
$6+3(5 y)$	GIVEN EXPRESSION
$6+(3 \cdot 5)(y)$	
$6+15 y$	
$15 y+6$	

Prove that $6+3(5 y)$ is equivalent to $3(4 y+2)+3 y$ in another way.

1) Jack took the steps below to simplify an expression.

$$
4 x+3 x \rightarrow x(4+3) \rightarrow x(7) \rightarrow 7 x
$$

a) What properties did he use?
b) Prove that $4 x+3 x$ is equivalent to $7 x$ in another way.
2) Determine which of the following algebraic expressions are equivalent. Justify your response.
A. $3(n-4)$
B. $3 n-4$
C. $3 n-12$
D. $4 n-12-n$
E. $12+n$
F. $3(n+4)$
G. $-12+3 n$
H. $2 n+4+n$

Equivalent Expressions \qquad
Justification:

The
 TAKEAWAY

1) Algebraic expressions are equivalent when they represent the same \qquad .
2) We can prove algebraic expressions are equivalent by either creating identical expressions using \qquad of real numbers or by substituting values for the variable(s) in each expression and \qquad to see if the result is the same.
