Essential Question: What is the closure property?
do
now
Consider the set of whole numbers. Choose two whole numbers: \qquad and \qquad
a) add the whole numbers = \qquad . Is the result a whole number? \qquad Will the result always be a whole number for any pair of whole numbers? \qquad
b) subtract the whole numbers = \qquad . Is the result a whole number? \qquad Will the result always be a whole number for any pair of whole numbers? \qquad
c) multiply the whole numbers = \qquad Is the result a whole number? \qquad Will the result always be a whole number for any pair of whole numbers? \qquad
d) divide the whole numbers = \qquad . Is the result a whole number? Will the result always be a whole number for any pair of whole numbers? \qquad

Closure Property

A set is closed (under an operation) if and only if the operation on two elements of the set produces another element of the set. If an element outside the set is produced, then the operation is not closed.

Tell whether the set is closed under the operation. If it is not closed, justify your answer using an example.

Set	Operation	Closed/Not Closed	Example
1) Rational numbers	subtraction		
2) $\{-1,0,1,2\}$	addition		
3) Even integers	division		
4) Positive irrational numbers	addition		
5) Integers	multiplication		

6) Under what operation(s) is the set of rational numbers NOT closed? \qquad

Set	Operation	Closed/Not Closed	Example
7) Negative integers	addition		
8) Negative integers	multiplication		
9) $\{-2,0,2\}$	subtraction		
10) $\left\{\frac{1}{2}, 1,2\right\}$	division		
11) Rational numbers	division		

12) Under what operation(s) is the set of irrational numbers NOT closed? \qquad
13) Consider a set of numbers that is closed under addition and subtraction. What number must be in such a set? Explain. \qquad
\qquad
14) Consider a set of numbers that is closed under multiplication and division. What number must be in such a set? Explain. \qquad
\qquad

How do we determine if a set of numbers is closed?

Combine any 2 elements of a set using an operation.

Prove it with an example!

