Essential Question: What types of numbers result from multiplying rational and irrational numbers?

Do Now: Determine if each statement is true or false. Use the order of operations to evaluate each side of the equation.

a)
$$\sqrt{4} \bullet \sqrt{9} = \sqrt{36}$$
 b) $5 \bullet 3\sqrt{4} = 15\sqrt{4}$ c) $6\sqrt{9} \bullet 2\sqrt{4} = 12\sqrt{36}$

()	How do we multiply radical expressions?
	Rule: $a\sqrt{b} \bullet c\sqrt{d} = ac\sqrt{bd}$
	1 st : Multiply Coefficients
	2 nd : Multiply Radicands
	<u>Never</u> multiply a coefficient and a radicand

Multiply the radical expressions below. Simplify if possible.

1) $\sqrt{2} \cdot \sqrt{5}$ 2) $\sqrt{3} \cdot \sqrt{15}$ 3) $6\sqrt{7} \cdot 4\sqrt{2}$

What type of number is the result of the product of two rational numbers?

a)
$$5 \times 10$$
 b) $\frac{1}{2} \times \frac{5}{9}$ c) $-8.\overline{2} \times 0$ d) $\sqrt{4} \times \sqrt{25}$

Conclusion:

The product of two rational numbers is always a ______ number.

What type of number is the result of the product of a rational number and an irrational number?

a) $6 \times \sqrt{2}$ b) $\pi \times 100$ c) $\sqrt{4} \times \sqrt{5}$ d) $0 \times \sqrt{18}$

Conclusion:

The **product** of a **non-zero rational** number and an **irrational** number is always an ______ number.

What type of number is the result of the product of two irrational numbers?

a) $\pi \times \pi$ b) $\sqrt{2} \times \sqrt{5}$ c) $\sqrt{2} \times \sqrt{8}$ d) $(\sqrt{7})^2$ e) $\pi \times \frac{1}{\pi}$

Conclusion:		
The product of two irrational numbers can result in a		
number or an _	number.	

The		
TAK	FAVVAY	

Remember:	
$R \bullet R = $	_
I • R =	(R ≠ 0)
I • I =	

Sums and Products of Rational and Irrational Numbers		
•	Addition of two rational numbers will result in a sum that is a(n) numb	er.
•	Multiplication of two rational numbers will result in a product that is a(n)	number.
•	Addition of a rational number and an irrational number will result in a(n)	sum.
•	Multiplication of a non-zero rational number and an irrational number results in a(n) product.	
•	The sum or product of two irrational numbers may be or or	·

FLIP VIDEO LESSON (halgebra.org)

PROPERTIES OF REAL NUMBERS

Property	Exar	nple
Commutative Property of Addition		
A+ B = B + A		
Commutative Property of Multiplication		
AB = BA		
Associative Property of Addition		
(A + B) + C = A+ (B + C)	6 + 3 + 7	6 + 3 + 7
Associative Property of Multiplication		
$(A \times B) \times C = A \times (B \times C)$	-4 • 2 • 5	-4 • 2 • 5

Property	Example
Identity Property of Addition	
A + = A	
Identity Property of Multiplication	
A × = A	
Inverse Property of Addition	
A + (-A) =	*Additive Inverse means <u>OPPOSITE</u>
Inverse Property of Multiplication	
A × (1/A) =	*Multiplicative Inverse means <u>RECIPROCAL</u>
Distributive Property	
A(B + C) = AB + AC	3 (2 + 8)
or	
A(B - C) = AB - AC	3 (4 - y)

IT'S TIME TO TEST YOUR KNOWLEDGE ...

X + 0 = X
-3(7) = 7(-3)
6(y + z) = 6y + 6z
(-2.10) -7 = -2.(10 -7)
$\frac{1}{4}$ (4) = 1
$\frac{2}{5} \cdot \frac{3}{3} = \frac{6}{15}$