Essential Question: What types of numbers result from multiplying rational and irrational numbers?
Do Now: Determine if each statement is true or false. Use the order of operations to evaluate each side of the equation.
a) $\sqrt{4} \cdot \sqrt{9}=\sqrt{36}$
b) $5 \cdot 3 \sqrt{4}=15 \sqrt{4}$
c) $6 \sqrt{9} \cdot 2 \sqrt{4}=12 \sqrt{36}$

How do we multiply radical expressions?

Rule: $a \sqrt{b} \bullet c \sqrt{d}=a c \sqrt{b d}$

$1^{\text {st }}$: Multiply Coefficients
$2^{\text {nd }}$: Multiply Radicands
Never multiply a coefficient and a radicand
Multiply the radical expressions below. Simplify if possible.

1) $\sqrt{2} \cdot \sqrt{5}$
2) $\sqrt{3} \cdot \sqrt{15}$
3) $6 \sqrt{7} \bullet 4 \sqrt{2}$

What type of number is the result of the product of two rational numbers?
a) 5×10
b) $\frac{1}{2} \times \frac{5}{9}$
c) $-8 . \overline{2} \times 0$
d) $\sqrt{4} \times \sqrt{25}$

Conclusion:

The product of two rational numbers is always a \qquad number.

What type of number is the result of the product of a rational number and an irrational number?
a) $6 \times \sqrt{2}$
b) $\pi \times 100$
c) $\sqrt{4} \times \sqrt{5}$
d) $0 \times \sqrt{18}$

Conclusion:

The product of a non-zero rational number and an irrational number is always an
\qquad number.

What type of number is the result of the product of two irrational numbers?
a) $\pi \times \pi$
b) $\sqrt{2} \times \sqrt{5}$
c) $\sqrt{2} \times \sqrt{8}$
d) $(\sqrt{7})^{2}$
e) $\pi \times \frac{1}{\pi}$

Conclusion:

The product of two irrational numbers can result in a \qquad number or an \qquad number.

The
 TAKEAWAY

Remember:

$$
\begin{aligned}
& R \bullet R= \\
& I \bullet R=\square \\
& I \bullet I=
\end{aligned}
$$

Sums and Products of Rational and Irrational Numbers

- Addition of two rational numbers will result in a sum that is $\mathrm{a}(\mathrm{n})$ \qquad number.
- Multiplication of two rational numbers will result in a product that is $\mathrm{a}(\mathrm{n})$ \qquad number.
- Addition of a rational number and an irrational number will result in a(n) \qquad sum.
- Multiplication of a non-zero rational number and an irrational number results in a(n) \qquad product.
- The sum or product of two irrational numbers may be \qquad or \qquad .

FLIP VIDEO LESSON (halgebra.org)

PROPERTIES OF REAL NUMBERS

Property	Example
Commutative Property of Addition $A+B=B+A$	
Commutative Property of Multiplication $A B=B A$	
Associative Property of Addition $(A+B)+C=A+(B+C)$	$6+3+7 \mid 6+3+7$
Associative Property of Multiplication $(A \times B) \times C=A \times(B \times C)$	$-4 \cdot 2 \cdot 5 \quad-4 \cdot 2 \cdot 5$

Property	Example
Identity Property of Addition $A+\quad=A$	
Identity Property of Multiplication $A x=A$	
Inverse Property of Addition $A+(-A)=$	*Additive Inverse means OPPOSITE
Inverse Property of Multiplication $A \times(1 / A)=$	*Multiplicative Inverse means RECIPROCAL
Distributive Property $A(B+C)=A B+A C$ or $A(B-C)=A B-A C$	$3(2+8)$ $3(4-y)$

IT'S TIME TO TEST YOUR KNOWLEDGE...

$x+0=x$
$-3(7)=7(-3)$
$6(y+z)=6 y+6 z$
$(-2.10) \cdot-7=-2 .(10 .-7)$
$\frac{1}{4}(4)=1$
$\frac{2}{5} \cdot \frac{3}{3}=\frac{6}{15}$

