8 Algebra CC 1-1

FLIP VIDEO LESSON (halgebra.org)

Square Roots and Cube Roots

Note Taking Time!	
$\sqrt{}$ Square Root:	
$\sqrt[3]{}$ Cube Root:	
	

Is it Rational or Irrational?	
$\sqrt{49}$	$\sqrt[3]{1000}$
$\sqrt{54}$	$\sqrt[3]{24}$

Now It's Your Turn!

$$1)\sqrt{100}$$

$$2)\sqrt[3]{9}$$

$$3)\sqrt{40}$$

$$4)\sqrt[3]{64}$$

Can you name a number that is a perfect square and a perfect cube?

Are You Ready for a Challenge?

1)
$$\sqrt{\frac{4}{9}}$$

2)
$$\sqrt[3]{\frac{1}{8}}$$

3)
$$\sqrt{1.44}$$

4)
$$\sqrt[3]{-27}$$

Today's Take Away

Square Roots $\sqrt{}$ of perfect squares and cube roots $\sqrt[3]{}$ of perfect cubes are _____

____.

Square Roots $\sqrt{}$ of non-perfect squares and cube roots $\sqrt[3]{}$ of non-perfect cubes are ______

____·